分数与除法教学反思

时间:2023-06-09 18:10:45 教学反思 我要投稿

分数与除法教学反思20篇

  作为一名优秀的教师,我们要有很强的课堂教学能力,对教学中的新发现可以写在教学反思中,那么什么样的教学反思才是好的呢?下面是小编帮大家整理的分数与除法教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

分数与除法教学反思20篇

  分数与除法教学反思1

  分数乘除法应用题教学是小学数学中的一个难点,对孩子来讲,内容抽象,数量关系复杂,每年讲到这部分知识,孩子都会出现乘除部分,数量与分率不对应,做题没有思路等等。要突破这个难点,重在理解数量关系,而数量关系中的单位“1”和关系式,又是做题的关键,所以,在学习本节课时,我注意做到了以下几点:

  1、突出单位“1”,写好数量关系式

  分数除法应用题最重要的是让学生仅仅抓住单位“1”的量,理解用单位“1”的量×对应的分率=对应的数量。不管是分数乘法应用题,还是除法应用题,写关系式,找单位“1”的方法是相同的,所以,每一节课,都出这样的题目,训练写数量关系,并画出线段图,理解题意。

  比如:一本故事书,读了3/5,让学生写出两个关系式:一本书×3/5=读了的页数

  通过联想,还能写出另外一个关系式:一本书×(1-3/5)=剩下的页数

  2、严格做题的程序

  通过几年的教学,我发现很多孩子对分数应用题,都是凭着感觉来做题,没有严格按照程序做题,所以出错非常多。今年从开始学习应用题,我就要求学生严格步骤:一找,找题目中的单位“1”,教给学生找单位“1”的方法。二写,写数量关系式,用单位“1”×对应的分率=对应的数量,关系式必须写成乘法关系式。三、带入数量,看题目中哪个数量给除了,从关系式中替换下来,然后选择适合的方法做。四列式计算,进行解答。

  3、教给孩子转化的方法

  分数应用题中,比较难的是“比一个数多(少)几分之几”,这样的`题目,教给学生两种方法:一种是按照份数做题,找准单位“1”后,明白两个量相对应的分数。从份数方面来解决,另外一种是交给孩子转化的方法,让学生明白比一个数多几分之几,就相等于这个数的一加几分之几的和。明白了这一点,对孩子来讲,也降低了学习的难度。把复杂的分数应用题纳入到了简单的应用题上。

  4、教给孩子做题的方法

  分数除法应用题,我采用的是列方程的方法来解答,重在让学生理解等量关系。采用数形结合的方法,一边画图,一边用方程理解题意。另外在做题过程中,多种方法题解,让学生全面理解。

  其实,不管哪种方法,重在理解,沟通知识之间的内在联系。

  分数与除法教学反思2

  本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

  一、直观演示是学生理解分数与除法的关系的前提。

  由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的.含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

  爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

  a:你们是几块几块的分的?

  b:每人每次分得多少块饼?

  c:分了几次,共分了多少块?(就是3个块就是几块)

  d:怎样才能看出是几块?

  问题的提出针对性强,有利于学生把握数学的本质。

  三、 用发展的思维去理解所学的知识,注重了知识的系统性。

  数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0。7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

  分数与除法教学反思3

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的.是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

  分数与除法教学反思4

  “已知一个数的几分之几是多少,求这个数”的应用题,是由分数乘法意义扩展到除法意义而产生的应用题,这类应用题历来是教学中的难点。这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,紧扣已掌握的分数乘法应用来组织教学显得比较重要。此外,由于分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,不同的仅是一个条件和问题不同,因此教材强化用列方程的方法解,这样做就能利用分数乘除法之间的内在联系,统一分数乘除法应用题的解题思路。因此,在教学中我注重已下几点:

  一、 重视新旧知识的内在联系。

  分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,因此在探索新知之前,精心设计复习练习。一是找单位“1”和写数量关系式练习;二是出示与例题有关的'分数乘法应用题。复习与新知有密切联系的旧知,为新知的探究铺路搭桥, 为学生更好地从旧知迁移到新知做准备,起到水到渠成的作用。

  二、重视思路教学。

  思路,是学生确定解题方法的分析、思考过程,这个过程应是有条有理的,有要有据的。本课分析、具体地设计了使学生形成思路的过程:首先,分步思考;接着,引导学生完整地复述思考过程;最后,通过个别、集体训练,使学生形成完整思路。

  三、重视训练学生讲题。

  应用题教学重在分析数量关系。学生只有理解了题目中的数量关系,

  才会进一步进行思考。若在学生不理解题目中的数量关系的情况下进行分析,则思无源,想无据。所以,讲清题目中的数量关系是分析的基础,必须给予足够的重视。

  四、重视列方程解答。

  本节课没有设计算术思路,因为用列方程解答分数应用题是有限的,能比较熟练地解答,但达不到熟练的程度,发现不了解答规律。

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。

  分数与除法教学反思5

  一、问题展示

  在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:

  1、在除号与除数的同步变化中,学生忘记将除号变成乘号。

  2、在除数变成其倒数的时候,学生误将被除数也变成了倒数。

  3、计算时约分的没有及时约分,导致答案不准确。

  二、原因分析

  为什么会形成这些错误现象,通过对比分析,可能有一下原因:

  1、教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。

  2、学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的`,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。

  三、解决办法

  1、增加学生板演的机会,

  2、课堂上,对于关键性的词语,要求学生齐读,用以加深印象。

  3、辅差工作要求学生以同位为单位,进行个别辅导。

  分数与除法教学反思6

  观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数/除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:

  (1)分母能不能为0?

  (2)用字母如何表示它们的.关系?

  (3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。

  有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数/除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少……通过争辩,明确分数和除法的各自意义。

  提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

  分数与除法教学反思7

  观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的'反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  一、以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  二、分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

  分数与除法教学反思8

  《分数除法(三)》是北师大版小学数学五年级下册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。教学中,首先给学生提供探究的平台,让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对 “分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。

  1、从已有知识入手,激发学生求知欲。在这节课的教学组织中,教师从学生已有的基础知识入手,很自然的将复习铺垫中的乘法应用题过渡到分数除法应用题。将学生的整个学习活动围绕“操场上的活动”这一活动情境步步展开。这样既有一定的挑战性,又能激起学生学习的兴趣,增强学生的求知欲。

  2、充分发挥了教师主导作用和学生的'主体作用。本节课从新知的引入,到问题的提出、数量关系的分析、问题的解决,在整个学习活动中学生的学习空间是宽阔的。在教学中,教师通过学生同伴间相互说说或在组内讨论,然后集体交流,有效地引导学生,起到了组织者、指导者的作用。在给学生思考的空间、学习的时间和交流机会的同时,学生主体作用得到了发挥,极大地鼓舞了学生,使学生个人的成功感获得了极大的满足,有力的促进了学生的数学思维及能力发展,也更激发他们去主动学数学。

  3、练习设计具有层次性。巩固练习是帮助学生进一步掌握所学新知的过程。教学中,教师同样应注意巩固练习设计的层次性,使不同的学生进行不同的练习,这样,即满足了吃不饱学生的需求,同时又能使中下学生获得成功感。

  4、学生习惯养成较好,学习能力较强。在每一项活动中,学生都能积极的投入到学习中,且学生倾听、交流等习惯养成较好;此外小组合作组织有序、实效性强,学生语言表达完整、精炼,归纳、总结能力较强。

  分数与除法教学反思9

  《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。

  在这节课的教学中,我觉得有以下几方面值得我去思考:

  一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。

  二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。但说的不是很明白。特别是3个饼合在一起来分学生,每一份是多少快,学生不太理解,在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。

  三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。

  四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的`意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。

  以上几方面就是我对这节课的一点思考,也是我在以后的教育教学中应该注意的几个方面,相信自己以后在这几方面会做得更好。

  分数与除法教学反思10

  六年级上册第三单元“分数除法的应用”的教学是本册的一个教学重点和难点。很多老师都深感在这部分的教学内容较难,教学效果不佳。自己通过在本段时间的教学和反思,自认为找到了一些基本的“小窍门”,和大家交流一下。

  一,加强前后知识之间的联系,实现知识的正迁移。

  要想分数除法学生学的顺利,在学习分数乘法时一定要做好铺垫。

  1.一个数乘分数的意义一定要理解好,让学生深刻地认识到:求一个数的几分之几是多少用乘法计算。

  2.能快速地根据题中的关键句判断出谁是单位“ 1” 。比如教学分数乘法应用题时,首先要注意引导学生看出是哪两个量在比较,谁是单位“ 1”?怎么确定的?这可以通过题意画图来说明。通过学生实践,让学生归纳出快速找单位“ 1”的方法:是“谁”的几分之几,相当于“谁”的几分之几,比“谁”多(少)几分之几,“谁”就是单位“ 1” 。最简单的方法是:分率前面的量就是单位“ 1” 。

  3.学生要熟练掌握画线段图的方法。比如要先画单位“ 1”(因为单位“ 1”是比较的标准,所以要先画),再画比较量。如果是“部分”与“整体”相比较的关系,可以画一条线段表示,如果是“两个不同的量”相比较,就要用两条线段表示。

  4.能根据线段图或关键句快速写出题中的“等量关系式”。其中根据应用题中的“关键句”进行分析比较快捷。

  例:“柳树是杨树的”等量关系式:杨树×=柳树

  “柳树比杨树多”等量关系式:杨树+杨树×=柳树或者杨树×(1+)=柳树

  这样学生在学习用方程解决分数除法应用题找等量关系式就轻松多了。

  二,教学分数除法应用题的时候要复习到位,唤醒学生已有的知识经验。

  比如教学第三单元分数除法“解决问题”例4的时候,就要复习一下学生学习第一单元分数乘法“解决问题”例8的知识,如从关键句中找单位“1”、说出等量关系式等。教学分数除法解决问题例5时,就要对应复习第一单元乘法解决问题例9的知识。一节课只有事先的工作做得好,才能达到事半功倍的效果。

  三,在教师的引导下提高学生分析题意的能力。

  刚开始学习的时候,老师常常都引导学生根据具体的线段图来找分数除法中的等量关系式,以达到“数形结合”的目的',想法是好的,但效果却不尽人意,让学生每道题都画线段图也不现实,时间也不允许。所以,在学生掌握了画线段图分析数量关系后,我就让学生扔掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多是多“谁”的?(多杨树的)④到底多多少,具体的量怎么算?(杨树×)⑤这句话的意思就是:柳树比杨树多了杨树的。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)

  当然,还有一种等量关系式:杨树×(1+)=柳树可由以下几个问题入手:①柳树比杨树多,就是比单位“1”多,柳树应该是杨树的几分之几?(1+ =)②即柳树的棵树=杨树的,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。

  学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。

  以上只是自己一点浅显的看法,恳请咱们的数学前辈和教学高手批评指正。

  分数与除法教学反思11

  分数除法简单应用题教学是整个小学阶段应用题教学的重、难点之一,如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量。我作了以下的一些教学尝试:

  一、从生活入手学数学。

  一开始,我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的'数学。

  二、关注过程,让学生获得亲身体验。

  为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、复习时要注意三种分数应用题,即求一个数是另一个数的几分之几,求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数,三者之间的联系。

  在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,教师教的快乐。

  分数与除法教学反思12

  分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的基础上进行教学的。

  成功之处:

  沟通分数乘除法解决问题,加强知识的.横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:

  总数÷份数=每份数总数÷每份数=份数

  路程÷时间=速度路程÷速度=时间

  总价÷数量=单价总价÷单价=数量

  在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?

  在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。

  不足之处:

  1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。

  2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。

  改进之处:

  1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。

  2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。

  分数与除法教学反思13

  “已知一个数的几分之几是多少,求这个数”的应用题。是由分数乘法意义扩展到除法意义而产生的应用题。这类应用题历来是教学中的难点。由于这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,为了使学生更好地理解题目的数量关系,我在引导学生分析数量关系时,仍然按照解答分数乘法应用题的思路去分析,从而发现作单位“1”的量是未知的,可以根据求“一个数的几分之几是多少”的关系,列方程解。同时注意引导学生思考如何用算术法解?思路是怎样的?通过分析让学生感悟到用除法解题思维是分数乘法解题的逆思路。从而让学生把两种类型的应用题有机的统一在一个知识点上。通过本节课教学,我感受到以下几点。

  1、充分运用对比,让学生通过分数乘法应用题理解除法应用题。

  为让学生认识解答分数除法应用题的关键是什么,教学中,我抓住乘除法之间的内在联系,让学生从中发现与乘法应用题的区别,使学生了解这类分数应用题特征。接着放手让他们借助线段图,分析题中的数量关系,在学习过程中发现规律,得出这类应用题根据“已知一个数的'几分之几是多少,求这个数用除法”能解决问题。

  2、鼓励方法多样,让学生拓宽解题思路。

  在解答应用题的时候,我改变以往过早抽象概括数量关系对应量÷对应分率=单位“1”的量,再让学生死记硬背,而是充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力。我鼓励学生对同一个问题采取多种不同的解法,引导学生学会多角度分析问题,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  分数与除法教学反思14

  这部分内容是在前面教学分数除以整数、整数除以分数的基础上教学的,通过这一内容的学习可以为以后的学习打下坚实的基础。我在设计本课时主要突出让学生充分评价和反思。 如在本节教学中,,我先请学生独立计算,然后再四人小组合作交流自己的计算方法。 汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数的倒数。他们认为分数除以分数的计算方法也等于乘以这个数倒数。 通过交流讨论,最后得出分数除以分数的计算方法是一个数除以分数等于这个数乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。 很自然地复习了旧知识,再结合具体的算式强调转化的过程,特别是除号要变为乘号,除数变成了它的倒数,两个要同时变。由此推导出分数除以分数也是这样的,并且归纳其中的联系,发现其中不管是怎么样的分数除法都是一样的,这样就可以只用甲数和乙数来区别。 根据学生的分析,我及时把统一的计算法则板书在黑板上,并把变化的和不变的.用不同的记号标出来。

  本节的教学中,学生始终以积极的态度投入到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。

  分数与除法教学反思15

  在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

  成功之处:

  1.读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的结果,能根据分的`结果说出所表示的意义。

  2.留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

  (1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

  (2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

  (3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

  (4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

  不足之处:

  对于除法算式的两层含义,个别学生还是有些混淆。

  再教设计:

  让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

  分数与除法教学反思16

  一、结合学生的生活学数学。

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。”教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的机会。

  二、参与学习过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  教学中把“自主、合作、探究”的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的'异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。学生毕竟是初学者,他们的自主、合作、探究肯定是不全面的,各种水平的学生在自主、合作、探究中所学的层次也是不一样的。所以教师的讲解是必要的,尤其是概念性的知识,可以为学生节约许多时间。但教师在教学中要准确把握自己的地位。帮助优生建构知识结构,帮助一般学生理解题意掌握知识。真正把自己当成了学生学习的帮助者、激励者。发挥学生的主体地位,重视教师的主导地位。

  三、多角度分析问题,提高能力。

  在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于“后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的数量的线段图;“知“1”求几用乘法,知几求“1”用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  分数与除法教学反思17

  六年级上学期数学第二单元是“分数除法”,其中第一小节是:“分数除法的意义和计算法则”。在教学上,“分数除法的意义”好办,因为有分数乘法和小数乘法除法的意义做基础,在课堂上,只要按课文编排稍做解释学生就可明白。

  对分数除法计算法则,我对课文编排讲解内容作了一下变动。这一小节有3道例题,分别讲“分数除以整数” 、“整数除以分数” 、 “分数除以分数”。分数除法的计算法则如何得来,如何向学生讲得明白,一直是老师们所苦恼的问题。不讲嘛,似乎是没有完成教学任务,讲吧,即使是老师认为自己讲得很明白,其实学生真正理解吗?我认为,学分数除法的关键是记牢、熟练运用“计算法则”,至于这计算法则是如何得来的',可暂时忽略。我把这3道例题分为两节课讲解。第一课时讲“分数除以整数”,通过例1,“把6/7米铁丝平均分成2段,每段长多少米?”使学生明白,把一个数平均分成2份,既可以用除法“÷2”表示,也可以用乘法“×1/2”表示,也就是说“÷2”=“×1/2”,进而,把一个数平均分成3、4、5……,既可以用÷3、÷4、÷5……表示,也可以用×1/3、1/4、1/5……表示,而1/2是2的倒数、1/3是3的倒数……,从而得出“除以一个数(0除外),等于乘这个数的倒数”。在和学生学习过程中,尽管我用的是课本例1的教学素材,但在教学过程中,我一直有意忽略被除数和除数到底是分数还是整数的问题,只是强调被除数除以除数等于乘除数的倒数。教学完例1,就让学生做相应的练习(强化“除以一个数(0除外),等于乘这个数的倒数”的概念)第二课时,同学生学习例2、例3。课文中例2“一辆车2/5小时行驶18千米,1小时行驶多少千米?”,是详细地讲解了为什么18÷2/5最后可以表达为18×2/5,而我只是根据题意列出18÷2/5后,让学生回想例1的学习过程和分数除法计算法则,让学生自己说出18÷2/5=18×2/5,然后计算得出结果,而省略了中间的讲解过程。接着学习例3“小刚3/10小时走了14/15千米,他1小时走多少千米?”“14/15÷3/10=14/15×3/10”。这两道例题是应用题(但在教材安排中,没有把它放在分数除法应用题范围内),我没有把注意力放在计算法则的推倒过程上,反倒是根据题意为什么这样列式花了些时间。

  3道例题学习完(还包括相当量的练习),用了两节课,学生已经掌握了“甲数除以乙数(0除外)等于甲数乘乙数的倒数”的分数除法计算法则。根据学生情况的反馈,学生掌握这一小节的知识是扎实的。

  现在我还在想,既然乘法不强调被乘数与乘数,如,一本书5元,买3本要多少元?既可以5×3,又可以3×5,只要结果是15元就算对,(但我坚持认为5×3和 3×5表达的意义是不一样的,不过,现行教材认为结果一样就行)那么,在学生不太明白算理而只掌握计算方法,在教学上应该是允许的。也许我这样做有点离经叛道,不符合现在的教育教学观念,但要求一定要让学生明白所有算理教学才算成功,似有点不太实际。学生(包括成人)很多时候知道要这样做并且做对了,已经是完成学习任务了,又何必强求一定要“知其所以言”呢?

  分数与除法教学反思18

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系,解决一些简单的问题。

  在引入课题之前,先复习旧知。课件呈现几道简单的`口算题,以唤醒学生对整数除法的记忆,为探索新知做铺垫。在探索新知时,课件呈现猪八戒化斋的故事,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:猪八戒又化了3张饼,每人分多少张?学生又拿出学具自主探究,再演示。学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

  分数与除法教学反思19

  本课的教学重点和难点是让学生理解“为什么除以一个分数,等于乘它的倒数”,否则,会使学生陷入只背结论,不明道理的误区,这样的结果或造成学生出错率高,为了很好的突出重点、突破难点,我创造性地使用了教材,做了如下的设计:

  一、动手操作,增加直观性。

  1、拿出自己准备好的圆形的纸,把它平均分成两份,每份是这张纸的几分之几?怎样计算?结果是多少?学生们通过自己的操作,很快说出了,“1除以2等于二分之一”的正确答案;

  2、问:这半张纸,也就是整张纸的二分之一,那么这张纸里有几个这样的二分之一呢?怎样计算?结果是多少?学生们通过观察和思考,得出了“1除以1/2等于2”的结论。我对学生的'做法进行了肯定和鼓励。

  3、再问:如果把整张纸每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?

  学生通过亲自动手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正确结论”,到了1除以1/5时,根本不用动手折就得出了正确的结论。而且大部分学生都总结了“1除以几分之一,就等于几”规律。看着学生们兴奋的表情,我提出了以下的问题:观察以上的算式河的书,你发现了什么?

  二、观察讨论,形成规律

  学生们通过观察,讨论终于发现了“除以一个分数,等于乘它的倒数”,我又追问:为什么要这样做?大家通过回忆分数的意义,也弄明白了其中的道理。

  这节课的学习,学生们大部分掌握了计算方法,但有个别学生在计算时有除号不变的现象。所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。

  分数与除法教学反思20

  4月22日上午,是我校五年级的家长开放日,我上了一节《分数与除法》的公开课。课后有幸得到了我的导师——广西师大熊宜勤教授的点评,由于当时时间比较紧,我们要赶到拱极小学去听黄智云老师的课,匆忙之中熊教授给我提出了两点宝贵意见:1.在重难点的突破上花的时间还不够.2.练习的设计量过多,没有很好的为本节课服务。听了她的建议以后,我陷入了深深的反思之中。是啊,都十几年的教龄了,怎么还会犯这样的错误呢?备课时,我只考虑到家长们要来听课,脑子里想得更多的是怎样才能把课上活?煞费苦心的创设了一个猪八戒分饼的情境,虽然这样能把整节课的教学内容串联在一起,整体感比较强,学生也很喜欢,但是却没有把例2中的重难点抓住。我的本意原是想把课堂交给学生,引导学生进行具体操作,让学生在具体操作中得出3除以4的商,以明确每人分得的不满1块,可用分数来表示,让学生明白一块饼的就等于3块饼的。可是在教学时,由于没有及时引导学生突出单位“1”,再加上没有使用展台操作,学生的理解就是没有那么到位。接着,我在教学例2后,引导学生观察黑板上的几个算式,总结归纳出分数与除法的关系也只用了1分多钟的时间,很多学生印象还不够深刻就进入了练习环节,以至于后面的练习出现了卡壳现象。

  回想自己的这一节课,真的是有太多不足的地方。带着熊教授给我提出的问题,第二天,我聆听了苏文俊老师上的这节课。课一开始,她就复习了上节课中我们学习的分数的意义和分数单位等内容,接着创设了分饼情境,(1)把6块饼平均分给2个同学,每人分得多少块?(2)把1块饼平均分给2个同学,每人分得多少块?(3)把1块饼平均分给3个同学,每人分得多少块?6÷21÷21÷3从数据上看,看得出都是苏老师精心设计的。从商是整数到商可以用小数也可以用分数表示,到除不尽需要用分数表示的思路,充分地让学生体会到解决问题的策略。在复习了把一个数平均分,用除法计算的同时,突出了知识间的联系。另外,对于例题2的教学她也把握得非常好,操作非常到位。2种分法:3块饼平均分给4个人,每人分得多少块?3÷4=?(块)学生经历了猜想和验证。这个估算对于学生用分数表示结果的思考有很重要的帮助。在这节课中,苏老师真正地把课堂交给了学生,她凭借教材内容,不断设疑问难,引导学生积极参与新知的探索过程,给学生充分的思维空间和时间,学生们独立思考、相互讨论、推理交流、经历解决问题的过程,充分体现了学生是学习的主体。正因为学生前面有了大量的感性认识,到后面总结出分数与除法的关系也水到蕖成。

  对于例题后面进行的对应训练,苏老师能结合本节课的重难点,设计有层次的练习。学生在理解并掌握了分数与除法之间的关系后,通过这组习题体验到了成功的快乐,建构了知识的框架,实现了数学思想的逐步深入。

  回想熊教授的话,再对比苏老师的'课堂,让我真正体会到了要想上好一节课,备课时必需要考虑到学生可能会遇到的问题,真正从学生的角度出发,重视学生学习的过程。在教学中把重点放在揭示各个知识形成的方法,展示学习新知识的思维过程之中,让学生通过感知——概括——应用的思维过程去发现真理,掌握规律。

  对于课堂练习的设计,不能太多,因为练习量多的弊端会让学生厌烦,我们要注意满足学生的成就感,保持学生的学习兴趣。另外,练习不仅仅是巩固所学知识,还要继续为学生的思维能力发展创设情境,充分发挥它的巩固新知识和发展思维能力的双重作用。

  能得到专家的指导,特别是零距离的指导,感受非常深刻,收获也特别多。愿自己在今后的教学中能多取他人之长,补己之短,使自己在教育教学(此文来自)这条路上,越走越宽,不断超越自我,完善自我。

【分数与除法教学反思】相关文章:

《分数与除法》教学反思12-27

分数与除法教学反思11-24

《分数除法》教学反思09-22

《分数与除法》教学反思02-19

分数与除法的教学反思03-25

分数除法的教学反思04-24

《分数与除法》教学反思05-13

《分数除法》教学反思05-19

分数与除法教学反思01-20

分数除法教学反思03-11