圆的标准方程说课课件

时间:2024-11-22 08:54:53 诗琳 课件 我要投稿
  • 相关推荐

圆的标准方程说课课件

  作为一位优秀的人民教师,编写课件是必不可少的,课件的基本模式有练习型、指导型、咨询型、模拟型、游戏型、问题求解型、发现学习型等。那要怎么写好课件呢?以下是小编为大家收集的圆的标准方程说课课件,欢迎大家分享。

圆的标准方程说课课件

  圆的标准方程说课课件 1

  教材分析

  圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

  教学目标

  1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

  2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

  3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

  教学重点难点以及措施

  教学重点:圆的标准方程理解及运用

  教学难点:根据不同条件,利用待定系数求圆的标准方程。

  根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

  学习者分析

  高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

  教法设计

  问题情境引入法 启发式教学法 讲授法

  学法指导

  自主学习法 讨论交流法 练习巩固法

  教学准备

  ppt课件 导学案

  教学环节

  教学内容

  教师活动

  学生活动

  设计意图

  情景引入

  回顾复习(2分钟)

  1.观赏生活中有关圆的图片

  2.回顾复习圆的定义,并观看圆的生成flash动画。

  提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?

  教师创设情景,引领学生感受圆。

  教师提出问题。引导学生思考,引出本节主旨。

  学生观赏圆的图片和动画,思考如何表示圆的方程。

  生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

  自主学习(5分钟)

  1.介绍动点轨迹方程的求解步骤:

  (1)建系:在图形中建立适当的坐标系;

  (2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;

  (3)列式:用坐标表示条件P(M)的方程 ;

  (4)化简:对P(M)方程化简到最简形式;

  2.学生自主学习圆的方程推导,并完成相应学案内容,

  教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

  自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

  培养学生自主学习,获取知识的能力

  合作探究(10分钟)

  1.根据圆的标准方程说明确定圆的方程的条件有哪些?

  2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的`判断方法:

  (1)点在圆上

  (2)点在圆外

  (3)点在圆内

  教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

  学生展开合作性的探讨,并陈述自己的研究成果。通过合作探究和自我的展示,鼓励学生合作学习的品质

  当堂训练(18分钟)

  1.求下列圆的圆心坐标和半径

  C1: x2+y2=5

  C2: (x-3)2+y2=4

  C3: x2+(y+1)2=a2(a≠0)

  2. 以C(4,-6)为圆心,半径等于3的圆的标准方程

  3. 设圆(x-a)2+(y-b)2=r2

  则坐标原点的位置是( )

  A.在圆外 B.在圆上

  C.在圆内 D.与a的取值有关

  4.写出下列各圆的标准方程(1)圆心在原点,半径等于5

  (2)经过点P(5,1),圆心在点C(6,-2);

  (3)以A(2,5),B(0,-1)为直径的圆.

  5.下列方程分别表示什么图形

  (1) x2+y2=0

  (2) (x-1)2 =8-(y+2)2

  (3) 《圆的标准方程》教学设计-贾伟

  6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图

  指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

  学生自主开展训练,并纠正学习中所遇到的问题,巩固所学知识,并查缺补漏。

  回顾小结(1分钟)

  1.你学到了哪些知识?

  2.你掌握了哪些技能?

  3.你体会到了哪些数学思想?

  采用提问的形式帮助学生回顾和分析本节所学。

  学生思考并从知识、技能和思想方法上回顾总结。

  培养学生归纳总结能力

  作业布置(1分钟)

  课本87页习题2-2

  A组的第1道题

  布置训练任务

  标记并完成相应的任务

  检测学生掌握知识情况。

  教学反思

  本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。

  教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。

  圆的标准方程说课课件 2

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:

  圆的标准方程

  教学难点:

  会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)<,点在圆内

  解:

  例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

  师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的.外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

  解:

  例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

  师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

  解:

  总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

  1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

  ②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

  (四)、课堂练习(课本P120练习1,2,3,4)

  归纳小结:

  1、圆的标准方程。

  2、点与圆的位置关系的判断方法。

  3、根据已知条件求圆的标准方程的方法。

  作业布置:课本习题4.1A组第2,3,4题。

  课后记:

  圆的标准方程说课课件 3

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的'标准方程及有关运用

  教学难点:

  标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  ⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习:

  1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

  圆的标准方程说课课件 4

  教学目标

  (一)知识目标

  1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;

  2.理解并掌握切线方程的探求过程和方法。

  (二)能力目标

  1.进一步培养学生用坐标法研究几何问题的能力;

  2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;

  3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。

  (三)情感目标

  通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。

  教学重、难点

  (一)教学重点

  圆的标准方程的理解、掌握。

  (二)教学难点

  圆的标准方程的应用。

  教学方法

  选用引导?探究式的教学方法。

  教学手段

  借助多媒体进行辅助教学。

  教学过程

  Ⅰ.复习提问、引入课题

  师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?

  生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ?p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]

  师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]

  师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.

  若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?

  生:x2+y2=r2.

  师:你是怎样得到的?(引导启发)圆上的点满足什么条件?

  生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2.

  师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?

  生:此圆是到点C(a,b)的距离等于半径r的点的集合,

  由两点间的距离公式得

  即:(x-a)2+(y-b)2= r2

  Ⅱ.讲授新课、尝试练习

  师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.

  特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.

  师:圆的标准方程由哪些量决定?

  生:由圆心坐标(a,b)及半径r决定。

  师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。

  1、 写出下列各圆的标准方程:[多媒体演示]

  ① 圆心在原点,半径是3 :________________________

  ② 圆心在点C(3,4),半径是 :______________________

  ③ 经过点P(5,1),圆心在点C(8,-3):_______________________

  2、 变式题[多媒体演示]

  ① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。

  答案: C(a,0), r=|a|

  Ⅲ.例题分析、巩固应用

  师:下面我们通过例题来看看圆的标准方程的应用.

  [例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。

  师:你打算怎样求过P点的切线方程?

  生:要求经过一点的直线方程,可利用直线的点斜式来求。

  师: 斜率怎样求?

  生:。

  师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)

  生:切线与过切点的半径垂直,故斜率互为负倒数

  半径OP的斜率 K1=, 所以切线的斜率 K=-=-

  所以所求切线方程:y-= -(x-)

  即:x+y=17 (教师板书)

  师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?

  生:。

  师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?

  (若看不出来,再看一例)

  [例1/] 圆的`方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

  答案:2x+3y=13 即:2x+3y-13=0

  师:发现规律了吗?(学生纷纷举手回答)

  生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

  师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

  生:xox+yoy=r2.

  师:这个猜想对不对?若对,可否给出证明?

  生:。

  [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。

  解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数

  ∵半径OP的斜率 K1=,∴切线的斜率 K=-=-

  ∴所求切线方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教师板书)

  当点P在坐标轴上时,可以验证上面方程同样适用。

  归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

  [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)

  引导学生分析,共同完成解答。

  师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。

  解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为

  (0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2.

  ∵P(0,4),B(10,0)都在圆上,于是得到方程组:

  解得:b=-10.5 ,r2=14.52

  ∴圆的方程为 x2+(y+10.5)2=14.52.

  将P2的横坐标x=-2代入圆的标准方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79

《圆的标准方程说课课件.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【圆的标准方程说课课件】相关文章:

圆与方程教案圆与方程课件03-23

关于《圆的标准方程》说课稿10-04

有关圆的标准方程说课稿09-16

圆的标准方程优秀教案10-09

圆的标准方程教案范本06-22

有关圆的标准方程说课稿范文10-03

《圆标准方程》说课稿(精选10篇)07-22

圆的标准方程教案设计08-24

《圆的标准方程》说课稿(精选10篇)11-02

关于圆的标准方程教学反思06-11

圆的标准方程说课课件

  作为一位优秀的人民教师,编写课件是必不可少的,课件的基本模式有练习型、指导型、咨询型、模拟型、游戏型、问题求解型、发现学习型等。那要怎么写好课件呢?以下是小编为大家收集的圆的标准方程说课课件,欢迎大家分享。

圆的标准方程说课课件

  圆的标准方程说课课件 1

  教材分析

  圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

  教学目标

  1. 知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

  2. 过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

  3. 情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

  教学重点难点以及措施

  教学重点:圆的标准方程理解及运用

  教学难点:根据不同条件,利用待定系数求圆的标准方程。

  根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

  学习者分析

  高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

  教法设计

  问题情境引入法 启发式教学法 讲授法

  学法指导

  自主学习法 讨论交流法 练习巩固法

  教学准备

  ppt课件 导学案

  教学环节

  教学内容

  教师活动

  学生活动

  设计意图

  情景引入

  回顾复习(2分钟)

  1.观赏生活中有关圆的图片

  2.回顾复习圆的定义,并观看圆的生成flash动画。

  提问:直线可以用一个方程表示,那么圆可以用一个方程表示吗?

  教师创设情景,引领学生感受圆。

  教师提出问题。引导学生思考,引出本节主旨。

  学生观赏圆的图片和动画,思考如何表示圆的方程。

  生活中的图片展示,调动学生学习的积极性,让学生体会到园在日常生活中的广泛应用

  自主学习(5分钟)

  1.介绍动点轨迹方程的求解步骤:

  (1)建系:在图形中建立适当的坐标系;

  (2)设点:用有序实数对(x,y)表示曲 线上任意一点M的坐标;

  (3)列式:用坐标表示条件P(M)的方程 ;

  (4)化简:对P(M)方程化简到最简形式;

  2.学生自主学习圆的方程推导,并完成相应学案内容,

  教师介绍求轨迹方程的步骤后,引导学生自学圆的标准方程

  自主学习课本中圆的标准方程的推导过程,并完成导学案的内容,并当堂展示。

  培养学生自主学习,获取知识的能力

  合作探究(10分钟)

  1.根据圆的标准方程说明确定圆的方程的条件有哪些?

  2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的`判断方法:

  (1)点在圆上

  (2)点在圆外

  (3)点在圆内

  教师引导学生分组探讨,从旁巡视指导学生在自学和探讨中遇到的问题,并鼓励学生以小组为单位展示探究成果。

  学生展开合作性的探讨,并陈述自己的研究成果。通过合作探究和自我的展示,鼓励学生合作学习的品质

  当堂训练(18分钟)

  1.求下列圆的圆心坐标和半径

  C1: x2+y2=5

  C2: (x-3)2+y2=4

  C3: x2+(y+1)2=a2(a≠0)

  2. 以C(4,-6)为圆心,半径等于3的圆的标准方程

  3. 设圆(x-a)2+(y-b)2=r2

  则坐标原点的位置是( )

  A.在圆外 B.在圆上

  C.在圆内 D.与a的取值有关

  4.写出下列各圆的标准方程(1)圆心在原点,半径等于5

  (2)经过点P(5,1),圆心在点C(6,-2);

  (3)以A(2,5),B(0,-1)为直径的圆.

  5.下列方程分别表示什么图形

  (1) x2+y2=0

  (2) (x-1)2 =8-(y+2)2

  (3) 《圆的标准方程》教学设计-贾伟

  6.巩固提升:已知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆C的标准方程并作图

  指导学生就不同条件下给出的圆心和半径关系,求解圆的标准方程这两个要素展开训练。

  学生自主开展训练,并纠正学习中所遇到的问题,巩固所学知识,并查缺补漏。

  回顾小结(1分钟)

  1.你学到了哪些知识?

  2.你掌握了哪些技能?

  3.你体会到了哪些数学思想?

  采用提问的形式帮助学生回顾和分析本节所学。

  学生思考并从知识、技能和思想方法上回顾总结。

  培养学生归纳总结能力

  作业布置(1分钟)

  课本87页习题2-2

  A组的第1道题

  布置训练任务

  标记并完成相应的任务

  检测学生掌握知识情况。

  教学反思

  本节教学主要遵循“回-导-学-展-讲-练-结”的高效课堂教学模式,遵循学生学习的主体地位,鼓励学生自主思考和探讨。

  教学中要积极鼓励学生多思考总结,在判断点与圆的位置关系中,要遵从学生个性化的发展思路,鼓励学生创造性的解决问题。

  圆的标准方程说课课件 2

  教学目标:

  1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。

  2、会用待定系数法求圆的标准方程。

  教学重点:

  圆的标准方程

  教学难点:

  会根据不同的已知条件,利用待定系数法求圆的标准方程。

  教学过程:

  (一)、情境设置:

  在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢?

  探索研究:

  (二)、探索研究:

  确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r。(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M适合的条件①

  化简可得:②

  引导学生自己证明为圆的方程,得出结论。

  方程②就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。

  (三)、知识应用与解题研究

  例1.(课本例1)写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上。

  分析探求:可以从计算点到圆心的距离入手。

  探究:点与圆的关系的判断方法:

  (1)>,点在圆外

  (2)=,点在圆上

  (3)<,点在圆内

  解:

  例2.(课本例2)的三个顶点的坐标是求它的外接圆的方程。

  师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的.外接圆。从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数。

  解:

  例3.(课本例3)已知圆心为的圆经过点和,且圆心在上,求圆心为的圆的标准方程。

  师生共同分析:如图,确定一个圆只需确定圆心位置与半径大小。圆心为的圆经过点和,由于圆心与A,B两点的距离相等,所以圆心在线段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线与直线m的交点,半径长等于或。

  解:

  总结归纳:(教师启发,学生自己比较、归纳)比较例2、例3可得出圆的标准方程的两种求法:

  1、根据题设条件,列出关于的方程组,解方程组得到的值,写出圆的标准方程。

  ②﹑根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程。

  (四)、课堂练习(课本P120练习1,2,3,4)

  归纳小结:

  1、圆的标准方程。

  2、点与圆的位置关系的判断方法。

  3、根据已知条件求圆的标准方程的方法。

  作业布置:课本习题4.1A组第2,3,4题。

  课后记:

  圆的标准方程说课课件 3

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的'标准方程及有关运用

  教学难点:

  标准方程的灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  ⒈说出下列圆的方程

  ⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

  ⒉指出下列圆的圆心和半径

  ⑴(x-2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2-6x+4y+12=0

  ⒊判断3x-4y-10=0和x2+y2=4的位置关系

  ⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

  练习:

  1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

  圆的标准方程说课课件 4

  教学目标

  (一)知识目标

  1.掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径;

  2.理解并掌握切线方程的探求过程和方法。

  (二)能力目标

  1.进一步培养学生用坐标法研究几何问题的能力;

  2. 通过教学,使学生学习运用观察、类比、联想、猜测、证明等合情推理方法,提高学生运算能力、逻辑思维能力;

  3. 通过运用圆的标准方程解决实际问题的学习,培养学生观察问题、发现问题及分析、解决问题的能力。

  (三)情感目标

  通过运用圆的知识解决实际问题的学习,理解理论来源于实践,充分调动学生学习数学的热情,激发学生自主探究问题的兴趣,同时培养学生勇于探索、坚忍不拔的意志品质。

  教学重、难点

  (一)教学重点

  圆的标准方程的理解、掌握。

  (二)教学难点

  圆的标准方程的应用。

  教学方法

  选用引导?探究式的教学方法。

  教学手段

  借助多媒体进行辅助教学。

  教学过程

  Ⅰ.复习提问、引入课题

  师:前面我们学习了曲线和方程的关系及求曲线方程的方法。请同学们考虑:如何求适合某种条件的点的轨迹?

  生:①建立适当的直角坐标系,设曲线上任一点M的坐标为(x,y);②写出适合某种条件p的点M的集合P={M ?p(M)};③用坐标表示条件,列出方程f(x,y)=0;④化简方程f(x,y)=0为最简形式。⑤证明以化简后方程的解为坐标的点都是曲线上的点(一般省略)。[多媒体演示]

  师:这就是建系、设点、列式、化简四步曲。用这四步曲我们可以求适合某种条件的任何曲线方程,今天我们来看圆这种曲线的方程。[给出标题]

  师:前面我们曾证明过圆心在原点,半径为5的圆的方程:x2+y2=52 即x2+y2=25.

  若半径发生变化,圆的方程又是怎样的?能否写出圆心在原点,半径为r的圆的方程?

  生:x2+y2=r2.

  师:你是怎样得到的?(引导启发)圆上的点满足什么条件?

  生:圆上的任一点到圆心的距离等于半径。即 ,亦即 x2+y2=r2.

  师:x2+y2=r2 表示的圆的位置比较特殊:圆心在原点,半径为r.有时圆心不在原点,若此圆的圆心移至C(a,b)点(如图),方程又是怎样的?

  生:此圆是到点C(a,b)的距离等于半径r的点的集合,

  由两点间的距离公式得

  即:(x-a)2+(y-b)2= r2

  Ⅱ.讲授新课、尝试练习

  师:方程(x-a)2+(y-b)2= r2 叫做圆的标准方程.

  特别:当圆心在原点,半径为r时,圆的标准方程为:x2+y2=r2.

  师:圆的标准方程由哪些量决定?

  生:由圆心坐标(a,b)及半径r决定。

  师:很好!实际上圆心和半径分别决定圆的位置和大小。由此可见,要确定圆的方程,只需确定a、b、r这三个独立变量即可。

  1、 写出下列各圆的标准方程:[多媒体演示]

  ① 圆心在原点,半径是3 :________________________

  ② 圆心在点C(3,4),半径是 :______________________

  ③ 经过点P(5,1),圆心在点C(8,-3):_______________________

  2、 变式题[多媒体演示]

  ① 求以C(1,3)为圆心,并且和直线3x-4y-7=0相切的圆的方程。

  答案:(x-1)2 + (y-3)2 =

  ② 已知圆的方程是 (x-a)2 +y2 = a2 ,写出圆心坐标和半径。

  答案: C(a,0), r=|a|

  Ⅲ.例题分析、巩固应用

  师:下面我们通过例题来看看圆的标准方程的应用.

  [例1] 已知圆的方程是 x2+y2=17,求经过圆上一点P(,)的切线的方程。

  师:你打算怎样求过P点的切线方程?

  生:要求经过一点的直线方程,可利用直线的点斜式来求。

  师: 斜率怎样求?

  生:。

  师:已知条件有哪些?能利用吗?不妨结合图形来看看(如图)

  生:切线与过切点的半径垂直,故斜率互为负倒数

  半径OP的斜率 K1=, 所以切线的斜率 K=-=-

  所以所求切线方程:y-= -(x-)

  即:x+y=17 (教师板书)

  师:对照圆的方程x2+y2=17和经过点P(,)的切线方程x+y=17,你能作出怎样的猜想?

  生:。

  师:由x2+y2=17怎样写出切线方程x+y=17,与已知点P(,)有何关系?

  (若看不出来,再看一例)

  [例1/] 圆的`方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。

  答案:2x+3y=13 即:2x+3y-13=0

  师:发现规律了吗?(学生纷纷举手回答)

  生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。

  师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!

  生:xox+yoy=r2.

  师:这个猜想对不对?若对,可否给出证明?

  生:。

  [例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。

  解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数

  ∵半径OP的斜率 K1=,∴切线的斜率 K=-=-

  ∴所求切线方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教师板书)

  当点P在坐标轴上时,可以验证上面方程同样适用。

  归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程

  [例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)

  引导学生分析,共同完成解答。

  师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。

  解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为

  (0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2.

  ∵P(0,4),B(10,0)都在圆上,于是得到方程组:

  解得:b=-10.5 ,r2=14.52

  ∴圆的方程为 x2+(y+10.5)2=14.52.

  将P2的横坐标x=-2代入圆的标准方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的长度约为3.86M。

  Ⅳ.课堂练习、课时小结

  课本P77练习2,3

  师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.

  Ⅴ.问题延伸、课后作业

  (一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,?求过P点的圆的切线方程。

  课本P81习题7.7 : 1,2,3,4

  (二)预习课本P77~P79