分数的基本性质教学反思
“分数的基本性质”是人教版小学数学五年级下册的内容,在小学数学学习中有着承前启后、举足轻重的作用。分数的基本性质教学反思专题:为大家提供分数的基本性质教学反思的文章,以帮助大家更快的找到所需内容。
分数的基本性质教学反思1
江西省赣州市大公路第二小学李毅云
本节我想结合我校申报的市级课题《创设数学问题情境激发学生学习兴趣》和本人负责的市级课题《网络环境下促进自主学习的教学设计的研究》来谈谈这节课的教学设想,以及结合本节课的教学情况谈几点反思。
探索性问题的设计研究我认为有两个方面,一是教师对问题的精心设计,一是培养学生提问题的能力,教师以合作者、引导者的身份与学生一起探索,经历知识的获取过程,从而达到探究的目的,针对这点认识,这节课在我们学校课题组成员的集体备课下,作了这样的设计。这节课主要是,让学生能够从中感受到学习的乐趣,精心设计问题,让学生主动探求知识,发展思维。
1、情境的创设:“爱因斯坦说:“兴趣是最好的老师。”新课标提倡要关于创设情境,小学生天生具有好奇好胜的心理特征,而这些特征往往是学生对数学产生兴趣的导火线。通过和尚分饼,创设问题作为引子贯穿全课。利用课件中生动的动画,创设一种和谐愉悦的气氛,激发学生的学习兴趣,这点在这节课中我个人觉得达到这个目的。
2、探究活动与数学逻辑思维过去我们常为学生设计相同的学习方式并要求学生按照教师设计的流程展开学习。比如这节课的验证猜想中一本来我是设计了让学生按折、画、剪、比的步骤一步一步来引导学生操作,这样的设计看上去会很热闹,其实学生的操作依然是被教师牵着鼻子走。后来,为了给学生创设个性化的学习空间,我重新设计:“课桌上的信封里放着一些材料,你可以根据自己的需要选择合适的材料来验证自己的猜想,如果你觉得不需要材料,当然也是可以的。”这样的设计能够给予学生一定的探究空间,也增添也活动的趣味性和挑战性。但是在实际教学过程中,由于本人教学能力不够熟练,学生紧张,表现出来的并不像我所想像的那般,但至少可以算已是对传统的一种大胆的突破吧。
在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。
3、小组合作交流我们班由于在开展课题研究之前,很少可以说几乎没有合作的习惯。而这学期的小组合作的训练方面也做得不够,只能说是交流多于合作,所以在教学过程中出现了一些我预测不到的情况。在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。
4、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。
5、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练习有效地融合在一起,这也是一个很值得我个人反思的地方
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
分数的基本性质教学反思2
江西省赣州市大公路第二小学李毅云
一、教学目标
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、教材分析
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。探索分数大小不变的规律,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。
教学重点:理解掌握分数的基本性质。
教学难点:归纳性质
教学关键:利用分数意义理解性质
教学方法:直观教学法,故事情境激励法
三、教学设想
(一)、创设故事情境,激发学生学习兴趣,并揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
(二)、利用学具,小组合作探究规律。
当激发起学生的好奇心时,让学生四人小组合作利用手中的学具,结合分数的意义来探究其中的规律。在找到规律后让学生想一想,根据分数与除法的关系,以及整数除法中商不变的规律让学生再说说分数的基本性质,来加深学生对分数的基本性质的理解。在学生已经理解了分数的基本性质后,教师又让学生回到故事中去,让学生试想如果还有一只小猴子,它想要四块,猴王该怎样分呢?既达到了练习的目的,又首尾照应,调动学生的积极性。
(三)、设计有层次的练习,以达到巩固新知的目的。
四、教学设计
(一)创设情境,引起学生参与兴趣
1、猴王变戏法(学生模仿复习):
除法式子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)
3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?
(二)探究新知
1、动手操作、形象感知
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
2、观察比较、探究规律
(1)通过动手操作,谁能说一说图中阴影部分用分数表示各是几分之几?
(2)你认为它们谁大?请到展示台上一边演示一边讲一讲。
(3)既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(4)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。
要求:有序观察认真交流
(5)学生汇报讨论情况。
(6)启发点拨。
A.通过从左到右的观察、比较、分析,你发现了什么?
B.分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?请举例说明。板书:(零除外)
C.你认为这句话中哪些词语比较重要?(都、相同的数、零除外)
(7)把和化成分母是12而大小不变的分数。
A.思考:要把和化成分母是12而大小不变的分数,分子怎么变?变化的依据是什么?
B.让学生讨论后独立解答。
(8)讨论:猴王运用什么规律来分饼的?如果小猴子要4块,猴王怎么分才公平呢?
(9)质疑。让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师质答疑。
(三)随堂练习
1.P109.1.
2.判断对错,并说明理由。
(四)小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
五、让学生拿出课前发的分数纸,要求学生看清手中的分数与1/2相等的,报出自己分数后离场,与2/3相等的再离场与3/4相等的。
分数的基本性质教学反思3
一、猜谜游戏
二、探究
……
1、提供例证
(1).把相等的除法算式改成分数形式:3/1=6/2=9/3(得出三个相等的假分数)
(2).把3/1=6/2=9/3的分子、分母换个身,看看这三个分数的大小怎样?
(3).在提供的圆片中涂色表示这三个分数。操作比较,发现三个分数的大小相等。
(4).学生折纸找与1/2相等的分数:你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?
(5).展示与1/2相等的分数,并板书。
提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?(现象——分数的分子、分母不同,但它们的大小却是相等的)。
2、自主合作、探究新知。
1.生成问题:分数的分子、分母怎样变化分数的大小不变呢?
2.独立思考:学生独立思考1分钟。教师提出建议:如果你感到有困难,你可以看一下书本第61页上面的8行文字,并完成上面的填空。
3.小组交流。
4.探究验证。
你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?
教师根据学生的回答进行板书。
5.揭示结论:出示分数的基本性质的内容,并揭示课题。
三、多层练习、内化提升。
1.专项练习:填一填。(在○里填运算符号,在□里填数或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2.诊断练习:判断。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
反思
“分数的基本性质”是学生在学习分数意义的基础上,联系学生已学的商不变性质和分数与除法的关系进行教学的,是约分和通分的基础。
1、新课的引入新颖。
一上课,先通过猜谜,吸引学生注意力,同时渗透同时变化的现象。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的基本性质。教师环环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。
2、重视学生能力的培养,知识力求让学生主动探索,逐步获取。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。通过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括能力、动手操作能力和口头表达能力,充分体现学生的主体作用。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。课堂练习形式多样,有层次,有梯度,目的性、针对性较强,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。