整数拆分的练习题
整数拆分的练习题1
1、把60分拆成10个素数之和,要求其中最大的素数尽可能小,那么这个最大素数是几?
2、一个自然数,可以分拆成3个连续自然数之和,也可以分拆成4个连续自然数之和,还可以分拆成7个连续自然数之和。这个自然数最小是几?
3、自然数20xx能否拆成若干个连续自然数之和?如果能,有几种不同的拆法?
4、百货店要将铁钉包成10包,每包数量互不相等。如果顾客来买不超过1000枚的任意个数的铁钉,都要能从这10包中适当选取而不用拆包,能否做到?若能,请给出一种包装方法:若不能,说明理由。
5、有一把长度为9厘米却没有刻度的尺子,能否在上面画3条刻度线,使得这把尺子可以直接测量出1---9厘米的所有整厘米长度?若能,共有几种不同的画法?
整数拆分的练习题2
把70表示成11个不同的自然数之和,同时要求含有质数的个数最多。
分析:先考虑把70表示成11个不同的自然数之和。因1+2+3+……+11=66,现在要将4分配到适当的加数上,使其和等于70,又要使这11个加数互不相等。先将4分别加在后四个加数上,得到四种分拆方法:
70=1+2+3+4+5+6+7+8+9+10+15
=1+2+3+4+5+6+7+8+9+14+11
=1+2+3+4+5+6+7+8+13+10+11
=1+2+3+4+5+6+7+12+9+10+11
再将4拆成1+3,把1和3放在适当的.位置上,仅有一种新方法:
70==1+2+3+4+5+6+7+8+9+13+12
再将4拆成1+1+2或1+1+1+1或2+2,分别加在不同的位置上,都得不出新的分拆方法,故这样的分拆方法一共有五种。
显然,这五种分拆方法中含有质数的个数最多的是:
1+2+3+4+5+6+7+8+13+10+11
点金术:巧用举例和筛选法得出结论。
整数拆分的练习题3
某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?
【答案解析】
这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆.
7=1+2+4
9=1+8
10=2+8
13=1+4+8
14=2+4+8
15=1+2+4+8
【整数拆分的练习题】相关文章:
整数乘法练习题07-10
整数与小数练习题07-23
整数的读写练习题07-14
数学整数的认识练习题10-05
小数乘整数练习题11-22
整数加减法练习题05-06
除数是整数的小数除练习题05-04
学生小数乘整数的练习题09-22
数除以整数课后练习题07-23