数学教案:百分数应用

时间:2023-02-13 09:24:28 数学教案 我要投稿

数学教案:百分数应用

  作为一位兢兢业业的人民教师,通常需要准备好一份教案,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?下面是小编为大家整理的数学教案:百分数应用,欢迎阅读,希望大家能够喜欢。

数学教案:百分数应用

数学教案:百分数应用1

  教学目标

  1、知识目标:使学生知道储蓄的意义,明确本金、利息和利率的含义,掌握计算利息的公式,数学教案-百分数应用-利息。

  2、能力目标:培养学生能够利用公式解决实际问题的能力和搜集整理资料的能力。

  3、情感目标:培养学生的投资意识和节约爱储蓄的好习惯。

  内容分析

  1、重点:使学生明确本金、利息、利率的含义,掌握计算利息的公式。

  2、难点:理解本金、利息、利率的做含意以及三者之间的关系,会利用利息计算公式解答实际问题。

  教学准备

  1、学生上网去查寻或向父母了解有关的储蓄知识;

  2、银行定期存款凭条;

  3、教学课件。

  教学策略

  质疑解疑,合作探究,学会搜集整理资料

  教学模式

  导入依提纲自学小组交流自学体会师生补充说明

  教学程序

  一、启发谈话

  导入新课

  师:同学们,你们知道爸爸妈妈每个月的工资都做什么用了吗?剩下的暂时不用的钱呢?把钱存入银行有什么好处?那么怎样计算存款的利息呢?今天我们就来研究这问题。(板书课题:利息)学生自由谈。检查学生课前的调查情况。

  二、自学教材领悟新知

  三、小组讨论解决疑难

  四、排疑解难学后测查

  A:排疑解难师:下面请同学们依据自学提纲,独立自学教材38——39页的内容。屏幕显示自学提纲:

  1、存款的意义

  2、存款的种类和形式

  3、本金、利率和利息的含义

  4、存款的'利息计算公式

  5、小丽整存整取的年利率为2.25%,年利率2.25%的含义

  6、利息的多少是由什么决定的?教师巡回指导,并让学生在读书过程中把重点的地方画下来。

  师:大家在自学过程中都学到了一些新的知识,也可能会遇到一些解决不了的问题。下面就请同学们以小组为单位,依据自学提纲把自己自学所获得的知识及遇到的问题带到小组进行交流,讨论解决。若还不能解决的问题请暂时保留。(教师巡回指导。注意倾听学生提出的新问题及解决办法。理解有误的与同学们商讨解决。使学生从悟中学。)针对学生在自学中、小组讨论中遇到的疑难发现的新问题,师生共学生自己读书。学生自己解决问题。学生画。小组合作交流,共同探讨。学生提出解决不了的问题。锻炼学生的自学能力。锻炼学生独立思考和质疑解疑的能力。培养学生会读书的能力。培养学生团结协作的精神。锻炼学生质疑解疑的能力。锻炼学生通过自己查找

  B:屏幕出示:

  C:认识存款凭条,填写定期存款凭条。

  D:汇报上网查询到的相关资料。

  五、加强反馈巩固新知

  六、总结深入强化新知

  七、课后作业:同商量,研究解决。(也可利用学生上网查找的资料来共同解决)

  师:下面老师想检查一下大家的自学情况,看屏幕小红1999年10月1日在银行定期存了200元钱,如果存整存整取二年期的年利率是7.92 %,到20xx年10月1日小红一共能得到多少元?(读题,给学生思考时间,谁能说一说你的想法。学生上前板演,其他人在练习本做)

  1、拿出存款凭条,仔细观察,你发现了什么?

  2、指导学生填写并算出你将获得的利息。(选几个放展示台展示)

  师:你还知道存款的哪些知识或常识?

  1、基本练:选择题(略)

  2、提高练:应用题(略)

  3、思考题(略)依自学提纲进行总结复习,说说本节课你有哪些收获。略学生说出自己的想法。学生自己做。学生观察。学生自己填。汇报搜集到的资料。学生自由说。资料自己解决问题的能力。检测自学情况。锻炼学生把知识应用到实际生活中的能力。锻炼学生的观察能力。锻炼学生搜集整理资料的能力。检查学生的学习情况。突出本节课的重难点。锻炼学生的社会调查能力。

  板书设计:百分数的应用——利息利息的计算公式:利息=本金×利率×时间200×7.92%×2×(1-20%)+200

数学教案:百分数应用2

  教学目标

  1.在学生学习了解答一个数是另一个数的百分之几的应用题的基础上,学习求一个数比另一个数多(或少)百分之几的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。

  2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。

  教学重点和难点

  掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。

  教学过程设计

  (一)复习准备

  1.解答一个数是另一个数的百分之几用什么方法?(用除法)

  2.解答一个数是另一个数的百分之几的应用题,关键是什么?(找应用题中的标准量,也就是单位1,谁是标准量,谁就做除数。)

  3.口答,只列式不计算。(用投影出示)

  (1)5是4的百分之几?4是5的百分之几?

  (2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?

  (3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的.数是甲数的百分之几?

  4.板书应用题。

  一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

  分析:通过读题,在这道题中,谁是标准量?

  你是从哪句话中找出来的?应怎样列式呢?

  如果将这道题的问题变为实际造林比原计划多百分之几?,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。

  板书课题:百分数应用题

  (二)学习新课

  1.出示例3。

  例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

  (1)学生默读题。

  (2)例3与复习题4比较,有什么异同?

  (两道题条件相同,问题不同。)

  问题不同在哪儿?

  (复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)

  教师在例3中用红笔画出多字。

  (3)在这道题中,谁是单位1?是从哪句话中找到的?

  教师用双引号画出单位1。

  (4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。

  (意思是:实际造林比原计划多的公顷数是原计划的百分之几?)

  板书:多的公顷数是计划的百分之几?

  (5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?

数学教案:百分数应用3

  教学内容:九年义务教育六年制小学数学第十二册课本第111~112页例4。

  教学目标:

  1、知识与技能:理解和掌握求比一个数多(或少)几分之几的分数、百分数应用题基本数量关系与解题方法,比较熟练解答这类应用题,把它们的有关知识系统化。

  2、过程与方法:使学生经历整理信息、利用信息的过程,发展学生的初步逻辑思维能力,能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。

  3、情感态度与价值观:培养学生认真审题和学会联系实际的良好学习习惯。让学生感受到学习数学的快乐。

  教学重点:综合运用所学知识解答分数、百分数应用题。

  教学准备:多媒体课件

  教学过程:

  一、课前预习

  1、阅读课本十二册111页~112页的内容。再看看其他册课本有关分数、百分数的内容。

  2、在课本中,用自己喜欢的`符号标出预习中不懂的地方。

  3、提出预习中自己存在的问题,在课本相应的地方写出来。

  4、课前试练:111页“做一做”。

  5、复习十一册中“分数、百分数应用题”相关的知识。

  二、学生提出预习中问题

  三、对学生预习中普遍存在的问题,教师给予讲解。

  四、变式训练

  教师精点111页“做一做”。

  五、教师引讲

  1、创设情境。

  多媒体出示:学校举办的美术展览中,水彩画50幅;蜡笔画80幅。

  2、学生提出问题

  3、解决问题。

  (1)蜡笔画比水彩画多几分之几?

  (80—50)÷50=3/5

  (2)水彩画比蜡笔画少几分之几?

  (80—50)÷80=3/5

  为什么用80作除数?而不是用50?呢?

  4、归纳小结:

  这是两道求一个数比另一个数多(或少)几分之几的应用题。它们都是用相差量去跟单位“1”的量相比。相同点是这两个要比较的数量是已知的,不同点是两个问题中的哪个数量看作单位“1”不同,因此,在算式中用哪个数量作除数就不同。

  所以,求一个数比另一个数多(或少)几分之几,用相差量除以单位“1”的量。

  板书:找出单位“1”

  5、改编练习题。

  屏幕出示如下信息:

  (1)根据“蜡笔画比水彩画多”这个条件,

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  (2)根据“水彩画比蜡笔画少”这个条件,

  如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

  如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

  编出4道不同的分数应用题,并解答。

  ①蜡笔画比水彩画多,水彩画有50幅,蜡笔画有多少幅?

  蜡笔画:50×(1+3/5)=80(幅)

  ②蜡笔画比水彩画多,蜡笔画有80幅,水彩画有多少幅?

  水彩画:80÷(1+3/5)=50(幅)

  ③水彩画比蜡笔画少,水彩画有50幅,蜡笔画有多少幅?

  蜡笔画:50÷(1+3/8)=80(幅)

  ④水彩画比蜡笔画少,蜡笔画有80幅,蜡笔画有多少幅?

  水彩画:80×(1—3/8)=50(幅)

  思考:两个问题一样吗?解答的方法它们有什么相同的地方和有不同地方?

  6、总结。

  单位“1”的量已知用乘法

  单位“1”的量未知用除法

  “多”用1+分率

  “少”用1—分率

  7、迁移深化。

  教师:如果把以上几道应用题中的分数改为百分数,你会做吗?

  小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的单位“1”,再分析数量间的关系,然后根据实际情况,选择适当方法进行解答。

  把以上几道应用题中的分数改为百分数,数量关系一样,只是题里两个数量之间的关系是用百分数表示。解题的思路与方法不变。

  六、巩固练习

  1、基本练习:练习二十二第2、3题。

  2、深化练习:练习二十二第5题。

  七、作业

  练习二十二第1、4题。

  板书:复习稍复杂的分数、百分数应用题

  单位“1”的量已知用乘法

  单位“1”的量未知用除法

  “多”用1+分率

  “少”用1—分率

数学教案:百分数应用4

  教学目的:

  1.理解掌握百分数应用题的思考方法,能解释各种百分率大意义,并会正确灵活列式计算.

  2.经历解答百分数应用题的过程,培养学生归纳总结构建解决问题模式的能力.

  3.经历数学知识的实际应用,感受身边的数学知识,体会学数学,用数学的乐趣.

  教学重点:掌握百分数应用题的解答方法.

  教学难点:理解实际生活中百分率的`意义.

  教学准备:

  ①摸奖宣传单③计算器

  ②周日课表

  教学过程:

  一.新授教学

  1.引入:以五一摸奖引入.

  ɑ.五一节有多少人去摸奖?几元一张?.

  b.摸中大奖了吗?

  c.那么多人去摸,那么多大奖,怎么一个人也没中奖呢?

  d.导出中奖的可能性问题.生可能回答的情况:①中奖率太低.

  师:我很惊讶地听到他用了一个新名词,是什么?(师板书)

  师:谁能说说中奖率是什么意思?(视生情况.若知道的人较多,可让生直接说.师板书.若知道的人较少,可让生小组合作讨论通2分钟.

  ③若生回答不出中奖率,师可引导:摸奖的人多,奖票数量多,说明中奖的可能性怎么样?中奖的可能性在数学上用中奖率来表示.(师板书,再同①教学)

  2.集体讨论交流.

  (1)哪一组能说说中奖率是什么意思?同意吗?

  (2)生一起说,师板书.

  (3)那么中奖率怎么计算呢?(师板书:中奖率=中奖票数∕奖票总数100℅)

  (4)可见要计算中奖率要知道哪些条件?

  3.小组计算.

  (1)现在我们来计算一下中奖率到底是多少,好吗?(师投影出示摸奖宣传单或复印件.)

  (2)观察单子,条件都具备了吗?总票数在哪里?(师板书:25000000张)

  (3)自己选一至二项计算各奖项中奖率.

  (4)老师出示小黑板表格:

  (5)集体汇报交流,师填空.

  4.比较小结.

  看了这些中奖率有何感想?(这么低是否不参加了?为公益事业作贡献.科学地参与摸奖活动)

  5.导出生活中的百分率.

  a.类似中奖率这样的百分率生活中还有吗?.

  b.生举,师板书

  c.生选择一个解释给大家听.

  (师可随机问:谁会计算?)

  d.选择出勤率让生计算今天本班的出勤率.

  e.如果一人没来该怎么列式呢?

  6.小结,并出示课题:百分数的应用

  二.应用练习.

  1.口答(以硬币图投影)

  五分一角五角一元

  a.()是()的()℅

  b.改成()是()的50℅

  2.口答(上台当小老师,讲分析思考过程)投影

  例1.练习题(4)

  3.作业纸小测试(五题每题20分)

  p102356

  把10克盐放入100克水中,求盐水的含盐率.

  (1)选择一优生投影同桌批改.

  (2)统计反馈情况,随机计算正确率.

  (3)计算个人得分率.(有两种算法)

  4.发展练习

  1.投影出示周日课表

  2.选取喜欢的学科课时计算占周总课时的百分率

  3.汇报交流并谈谈你的想法

  5.趣味题(机动題)

  a.头长占身高的百分之几?(14.28)

  b.成人头长占身高的百分之几?(12.5)

数学教案:百分数应用5

  学习目标

  1、知识目标:使学生理解和掌握求一个数的百分之几的应用题的解题思路和方法。理解百分数的含义,掌握有关百分率的计算方法。

  2、能力目标:培养学生解决生产、生活中求百分率问题的能力。

  3、创新目标:培养学生学会运用知识来解决生活中的实际问题。

  4、德育目标:初步渗透概率统计思想。

  学情分析

  (一)教材分析

  本节的'教学重点是使学生理解和掌握求一个数的百分之几的应用题的解题思路和方法。教学中应注重帮助学生分析题里的数量关系。

  (二)学生分析

  这节知识对于学生来说是比较容易理解,教学中应让学生通过结合以前学习过的分数应用题来理解百分数应用题。

  确定五点

  1、重点:使学生理解和掌握求一个数的百分之几的应用题的解题思路和方法

  2、难点:正确分析题里的数量关系。

  3、创新点:结合生活实际来理解题意。

  4、德育点:通过编题,学会将数学知识运用于生活实际。

  5、空白点:出油率等百分率的总结。

  教具的选择与使用目的

  计算机课件。帮助学生理解数量关系。

  主要技术留空白、师生商量、启发引导。

  教学过程中的五环节设计:

  教师行为

  学生行为

  一、导引目标

  (一)复习

  1、4是5的几分之几?

  2、一根钢管长12米,用去8米。用去全长的百分之几?

  (二)引入新课:

  同学们已经掌握了分数应用题的解题方法,在此基础上,我们学习百分数一般应用题的解答方法。激发兴趣

  1、完成练习题。

  二、组织研究

  (一)、学生自学例1

  (二)、

  1、教师说明什么是发芽率。

  2、学生自学例2。

  合作成功

  1、自学教材。

  2、小组讨论。

  3、代表汇报。

  三创设条件

  1、学生谈生活中还有哪些地方运用了百分率?

  2、完成例2下面的做一做。自主参与

  1、结合生活实际谈生活中运用百分率的例子。

  2、完成做一做。

  四、引导创新

  分小组,结合生活实际进行编题练习。同学之间相互编题,相互解答。应用实践

  编题解答。

  五、反思小结

  1、习二十九中的1、2、3。

  2、谈谈自己本节课学得开心吗,有什么收获?还有哪些知识没学明白?

  巩固提高

  1、巩固练习。

  2、质疑、小结。

数学教案:百分数应用6

  【教学内容】

  北师大版小学数学第十一册第二单元P29、P30 百分数的应用(四)

  【教学目标】

  1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。

  2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。 【教学重点】

  进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。

  【教具准备】

  CAI课件。

  【学具准备】

  【教学设计】

  教 学 过 程 教 学 过 程 说 明

  一、 谈话引入

  课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

  师:课前同学们到银行调查了有关储蓄的知识,哪个小组愿意和大家交流你们的调查情况。

  组1:我知道人们把钱放到银行是有好处的。可以得到一些利息。

  组2:现在银行可以办各种储蓄卡,如果到外地出差,不用带现金,只带卡就可以了,既方便又安全

  组3:我们调查了存款的年利率。

  存期(整存整取) 年利率 %

  一年2.25

  二年 2.70

  三年 3.24

  五年 3.60

  组4:我们知道国债和教育储蓄不收利息税,其他的要交20%的利息税。

  师:同学们真了不起,了解了这么多。老师知道同学们在过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢?

  生:当然是存到银行了。

  二、 探究思考

  师:是啊,存到银行不但能支援国家建设,到期还能得到利息。根据存款的种类和时间的.长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?

  生:我想存三年整存整取,时间长一些利息就会多。

  生:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。

  师:你知道得真多,活期存款的利率低一些。

  师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存,刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。

  (教师给出计算利息公式:利息=本金x年利率x年限,并给出年利率表,学生计算300元存一年和三年整存整取的利息。)

数学教案:百分数应用7

  教学目标

  1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。

  2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。

  教学重点和难点

  找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。

  教学过程设计

  (一)复习基础知识

  教师谈话:我们已经复习了求一个数是另一个数的.几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这三类应用题。这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。(板书:分数,百分数应用题复习)

  投影出示如下习题:

  1、读题列式并按要求改编题:

  ①一本书100页,读了60页,读了这本书的几分之几?

  学生读题:

  如果把问题改成读了百分之几应如何解答?

  样列式计算?

  ③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板

  2、补充问题。

  (1)六一班有男生30人,女生20人,_______________?

  可以求什么?从最基本的想起。

  学生读题后补充问题并列式:

  ①女生是男生的几分之几(百分之几?)

  ②女生比男生少几分之几(百分之几?)

  ③男生是女生的几分之几(百分之几?)

  ④男生比女生多几分之几(百分之几?)

  可以求什么?从最基本的想起,

  学生读题后补充问题并列式:

  ①女生有多少人?

  ②全班共有多少人?

  ③男生比女生多多少人?

  ④女生比男生少多少人?

  3、回答问题。

  师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。)

  ③甲是甲乙差的4倍。

  ⑤乙是单位1。

  4、小结。

  通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?

  (二)画线段图分析解答

  投影出示如下练习:

  1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?

  ①学生读题;

  ②学生自己画图列式;

  ③订正画图;

  ④指名列式。为什么不是350(1-30%)?

  ⑤那为什么也不是35030%?

  2、修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?

  3、一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?

  指名学生到黑板上画图。

  4、一根绳子截去20%后,再接上6m,结果比原来的绳子长了1.5m,这根绳子原来长多少米?

  (三)综合练习

  1、题组训练(只列式不计算)

  共多少吨?

  箱重量正好相等,原来两箱桔子各有多少千克?

  老师用投影出示下图帮助学生理理解题意。

  学生课后完成。

  课堂教学设计说明

  本节课教学可分为三部分。

  第一部分,复习求一个数是另一个数的几分之几(百分之几),求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这一类应用题。通过补充问题这种方式,使学生能够把分数、百分数应用题的数量关系和解题方法进行复习,并且打开解应用题的思路,充分调动学生的积极性。

  第二部分是画线段图分析应用题。这部分的应用题具有典型性,要求学生能够画图进行分析,通过线段图找准量和率的对应关系,能够顺利地解决分数、百分数应用题。

  第三部分是深入理解三种应用题的解题思想,综合应用知识。这部分应用题比较难,主要是为了让学生能够综合应用所学过的知识,进一步提高学生的解题能力,让学有余力的学生有发散思维的机会,调动他们的积极性。

  板书设计

数学教案:百分数应用8

  北师大版小学六年级上册数学教案,依据教材文章选择优质教学设计及优质教案,为你提供全方位的优秀教案。

  教学目标:

  1、结合现实情境进一步认识增加百分之几或减少百分之几的意义,加深对百分数意义的理解。

  2、能解决比一个数增加百分之几的数或比一个数减少百分之几的数的实际问题,通过画线段图等方法。

  3、培养学生解决实际问题的能力,体会百分数与现实生活的密切联系。

  教学重点:

  理解增加百分之几或减少百分之几的意义。

  教学难点:

  能解决有关增加百分之几或减少百分之几的实际问题。

  教学过程:

  一、 情景导入揭示课题

  同学们,近几年咱们庄河发生了翻天覆地的变化,从1997年至今,我国铁路已经大规模提速。一列火车,原来每小时行驶180千米,提速后,这列火车的速度比原来增加了50%。现在这列火车每小时行驶多少千米?

  今天,我们一起来研究火车提速的问题百分数的.应用(二)。

  板书课题《百分数的应用二》

  二、 建立模型

  1. 探究新知

  (1)。引导学生独立思考你想用什么方法解决这道题。

  (2)以同伴交流你的思考过程。

  (3)小组汇报,交流情况。

  咱们可以通过画线段图帮助理解题意。

  请同学们仔细观察线段图,思考一下这列火车的速度增加了50%是什么意思呢?让学生小组讨论。通过观察然后结合我们上节课学习的知识,发现现在火车速度增加了那部分是原来的50%。这样,我们就先计算出现在火车速度比原来增加了多少千米。

  ① 18050%=90(千米)

  然后,让学生独立完成下一步列式

  ② 180+90=270(千米)

  那么,这道题还有没有其它的解题方法呢?让学生小组讨论。也可以这样算,把原来的速度看作是整体1(100%),用1+50%=150%,求出现在的速度是原来的百分之几。然后,让学生独立完成下一步列式,180150%=270(千米)。(可以列综合算式和分步算式)

  请同学看教材第92页练一练,找一位同学读题,思考一下二成是什么意思呢?指名让学生说。几成就是十分之几,也就是百分之几十。即:一成就是1/10,也就是10%;二成就是2/10,也就是20%。

  三、解释应用与拓展

  1.春雷小学去年毕业的学生有160人,今年毕业的学生比去年毕业的增加15%,今年毕业的学生有多少人?让学生独立解答,加深对百分数应用问题的理解。

  2.街心公园的总面积为24000米2 ,其中建筑、道路等占公园总面积的25%,其余为绿地,街心公园的绿地总面积有多少千米?

  让学生独立解答,然后说出两种解题方法,培养学生用多种方法解决简单的实际问题的能力。

  四、总结

  通过这节课的学习你有什么收获。

  板书设计:

  课题在黑板上中间,左边写线段图,中间写解题过程。

数学教案:百分数应用9

  求一个数比另一个数多或少百分之几的应用题是求一个数是另一个数的百分之几问题的发展,是在求一个数比另一个数多(或少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据题里的条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学内容

  教科书第116页例3,完成“做一做”中的题目及练习三十的第1~4题。

  教学目的

  在解答求一个数是另一数的百分之几的应用题及分数应用题的基础上,通过迁移类推,使学生掌握求一个数比另一个数多(或少)百分之几的应用题,提高学生分析解答应用题的能力。

  教学过程

  一、复习

  1、把下面各数化成百分数。

  0.63,1.08,7,0.044

  2、解答下面的应用题,并导入新课。

  “一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?”

  学生独立在练习本上列式解答,订正时教师板书下面的线段图和算式:

  14÷12=116.7%

  提问:为什么这样列式?

  要求学生分析出从问题“实际造林是原计划的百分之几”可以看出是求实际造林数与计划造林数的比,要以原计划造林的公顷数(12公顷)作为单位“1”,求14是12的百分之几,用除法计算。

  提问:从题目看,原计划造林多还是实际造林多?如果把这道题的问题改为“实际造林比原计划多百分之几”该怎样解答呢?

  教师将复习题问题改变后成为例3。

  二、新课

  1。帮助学生理解题意。

  (1)指名学生读题。

  (2)提问:例3的问题与复习题有什么不同?

  你怎样理解“实际造林比原计划多百分之几”这句话?

  (引导学生利用黑板上的线段图说明,求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数占原计划的百分之几。)

  (3)在学生回答的同时,教师完成下面线段图。

  (4)启发学生想,“实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较?谁是单位“1”?

  2、讨论算法并列出算式。

  提问:根据以上分析,要求出“实际造林比原计划多的公顷数”占“原计划的百分之几”必须先算什么?再算什么?

  列式:(14-12)÷12

  让学生计算出结果,教师板书并写出答案。

  3、想一想,这道题还有其他解法吗?

  引导学生思考,把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。

  学生列式,教师板书:

  14÷12×100%-100%

  4、将例3中的问题改成“原计划造林比实际造林少百分之几”该怎样解答呢?

  (1)提问:从问题看,哪两个量在比较?把谁看作单位“1”?解答时,先求什么?再求什么?

  (引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要以实际造林作为单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少的百分之几。)

  (2)学生列式,教师板书:

  (14-12)÷14

  如果有学生列出14÷14-12÷14也是允许的。

  (3)观察比较:

  将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?

  通过学生的讨论,再次强调两题中和谁比的标准不同,单位“1”就会发生变化。解答这种题时,仍然要注意找准单位“1”。

  5、引导学生观察例3的'问题及变化后的问题,提问:“谁能概括说明今天我们学习的是什么新知识?”

  学生回答后,教师板书课题:求一个数比另一个数多(或少)百分之几的应用题。

  三、巩固练习

  1、提问:

  求一个数比另一个数多(或少)百分之几的应用题的解题方法是什么?(即先求什么,再求什么。)

  解答此类应用题必须注意什么?(找准单位“1”、)

  2、独立解答第30页“做一做”的题目。

  订正时要求学生说出:先求十月份比九月份节约用水的吨数,再求节约的吨数占九月份的百分之几。九月份用水吨数为单位“1”,作除数。学生口述算式,教师板书:(800-700)÷800。

  教师提出,如果求九月份用水比十月份多百分之几,该怎样列式?学生列式,教师板书:(800-700)÷700。然后教师再次强调问题不同,单位“1”有所变化,必须要仔细审题,弄清数量关系。

  四、课堂练习

  1、学生做练习三十的第1题。集体订正时要提问算法。

  2、学生在书上做练习三十的第3题,要求先在练习本上列式计算,再将结果填在表中。教师要注意行间巡视,看看学生是否掌握了今天所学的解题方法,发现问题,及时纠正。

  五、作业

  练习三十的第2、4题。

数学教案:百分数应用10

  教学目标

  1.使学生了解本金、利息、利率、利息税的含义.

  2.理解算理,使学生学会计算定期存款的利息.

  3.初步掌握去银行存钱的本领.

  教学重点

  1.储蓄知识相关概念的建立.

  2.一年以上定期存款利息的计算.

  教学难点

  年利率概念的理解.

  教学过程

  一、谈话导入

  教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

  教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

  二、新授教学

  (一)建立相关储蓄知识概念.

  1.建立本金、利息、利率、利息税的概念.

  (1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

  (2)教师板书:

  存入银行的钱叫做本金.

  取款时银行多支付的钱叫做利息.

  利息与本金的比值叫做利率.

  2.出示一年期存单.

  (1)仔细观察,从这张存单上你可以知道些什么?

  (2)我想知道到期后银行应付我多少利息?应如何计算?

  3.出示二年期存单.

  (1)这张存单和第一张有什么不同之处?

  (2)你有什么疑问?(利率为什么不一样?)

  教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

  4.出示国家最新公布的定期存款年利率表.

  (1)你发现表头写的是什么?

  怎么理解什么是年利率呢?

  你能结合表里的数据给同学们解释一下吗?

  (2)小组汇报.

  (3)那什么是年利率呢?

  (二)相关计算

  张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

  1.帮助张华填写存单.

  2.到期后,取钱时能都拿到吗?为什么?

  教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

  3.算一算应缴多少税?

  4.实际,到期后可以取回多少钱?

  (三)总结

  请你说一说如何计算利息?

  三、课堂练习

  1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

  捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给希望工程多少元钱?

  2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

  (1)80011.7%

  (2)80011.7%2

  (3)800(1+11.7%)

  (4)800+80011.7%2(1-20%)

  3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

  四、巩固提高

  (一)填写一张存款单.

  1.预测你今年将得到多少压岁钱?你将如何处理?

  2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

  (二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的'本息多.你认为谁取回的本息多?为什么?

  五、课堂总结

  通过今天的学习,你有什么收获?

  六、布置作业

  1.小华20xx年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给希望工程多少元钱?

  2.六年级一班20xx年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

  3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

数学教案:百分数应用11

  教学目标

1、 知识目标:使学生知道储蓄的意义,明确本金、利息和利率的含义,掌握计算利息的公式,百分数应用-利息。

  2、 能力目标:培养学生能够利用公式解决实际问题的能力和搜集整理资料的能力。

  3、 情感目标:培养学生的投资意识和节约爱储蓄的好习惯。

  内容分析

1、 重点:使学生明确本金、利息、利率的含义,掌握计算利息的公式。

  2、难点: 理解本金、利息、利率的做含意以及三者之间的关系,会利用利息计算公式解答实际问题。

  教学准备

1、学生上网去查寻或向父母了解有关的储蓄知识;

  2、银行定期存款凭条;3、教学课件。

  教学策略 质疑解疑,合作探究,学会搜集整理资料

  教学模式 导入 依提纲自学 小组交流自学体会 师生补充说明

  教学程序

  一、启发谈话 导入新课 师:同学们,你们知道爸爸妈妈每个月的工资都做什么用了吗?剩下的暂时不用的钱呢?把钱存入银行有什么好处?那么怎样计算存款的利息呢?今天我们就来研究这问题。(板书课题:利息) 学生自由谈。 检查学生课前的调查情况。

  二、自学教材 领悟新知

  三、小组讨论 解决疑难

  四、排疑解难 学后测查

  A:排疑解难 师:下面请同学们依据自学提纲,独立自学教材38——39页的内容。屏幕显示自学提纲:1、存款的意义2、存款的种类和形式3、本金、利率和利息的含义4、存款的利息计算公式5、小丽整存整取的年利率为2.25%,年利率2.25%的含义6、利息的多少是由什么决定的?教师巡回指导,并让学生在读书过程中把重点的地方画下来。师:大家在自学过程中都学到了一些新的知识,也可能会遇到一些解决不了的问题。下面就请同学们以小组为单位,依据自学提纲把自己自学所获得的知识及遇到的问题带到小组进行交流,讨论解决。若还不能解决的问题请暂时保留。(教师巡回指导。注意倾听学生提出的新问题及解决办法。理解有误的与同学们商讨解决。使学生从悟中学。)针对学生在自学中、小组讨论中遇到的疑难发现的新问题,师生共学生自己读书。学生自己解决问题。学生画。小组合作交流,共同探讨。学生提出解决不了的问题。 锻炼学生的自学能力,小学数学教案《百分数应用-利息》。锻炼学生独立思考和质疑解疑的能力。培养学生会读书的能力。培养学生团结协作的精神。锻炼学生质疑解疑的能力。锻炼学生通过自己查找

  B:屏幕出示:C:认识存款凭条,填写定期存款凭条。D:汇报上网查询到的相关资料。五、加强反馈 巩固新知六、总结深入 强化新知 七、课后作业: 同商量,研究解决。(也可利用学生上网查找的资料来共同解决)师:下面老师想检查一下大家的自学情况,看屏幕小红1999年10月1日在银行定期存了200元钱,如果存整存整取二年期的年利率是7.92 % ,到20xx年10月1日小红一共能得到多少元? (读题,给学生思考时间,谁能说一说你的想法。学生上前板演,其他人在练习本做)1、拿出存款凭条,仔细观察,你发现了什么? 2、指导学生填写并算出你将获得的利息。(选几个放展示台展示)师:你还知道存款的哪些知识或常识?1、基本练:选择题 (略)2、提高练:应用题 (略)3、思考题 (略)依自学提纲进行总结复习,说说本节课你有哪些收获。略学生说出自己的想法。学生自己做。学生观察。学生自己填。汇报搜集到的资料。学生自由说。 资料自己解决问题的能力。检测自学情况。锻炼学生把知识应用到实际生活中的能力。锻炼学生的观察能力。锻炼学生搜集整理资料的能力。检查学生的学习情况。突出本节课的重难点。锻炼学生的社会调查能力。

  板书设计: 百分数的应用——利息利息的计算公式:利息=本金×利率×时间 200×7.92%×2×(1-20%)+200

  课题一:利息

  教学内容:教科书第l~2页及“做一做”中的题目,练习一的第1、2题。

  教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

  教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

  教学过程:

  一、导入

  教师提问:

  “如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

  “为什么要把钱存入银行呢?”多让几个学生发表意见。

  教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的.人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

  “你们知道利息是怎样计算的吗?”

  教师:今天我们就来学习一些有关利息的知识。板书课题:“利息”

  二、新课

  出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月 1日,小丽不仅可以取回存入的 100元,还可以得到银行多付给的 5.67元,共105.67元。

  先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲,储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期一年”,即小丽在银行存的 100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

  教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱做本金”

  存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

  这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

  根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

  按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

  “二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)

  “小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书: 300 × 5.94%

  “二年应得利息多少元?”学生口述,教师接着板书:× 2

  小丽的存款到期时可以得到的利息是35.64元。

  “想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

  “小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)

  如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

  三、巩固练习

  做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

  订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0.1425%,表示什么意思?再引导学生分步说出: 280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

  四、作业

  练习一的第1题。

  百分数应用-利息

【数学教案:百分数应用】相关文章:

百分数应用数学教案06-13

数学教案百分数的应用06-13

百分数应用数学教案08-24

百分数的应用利息数学教案09-01

数学教案百分数应用利息07-18

百分数的应用利息数学教案设计06-13

百分数的应用利息数学教案设计08-24

《百分数应用》说课稿12-27

百分数的应用说课稿11-04