教学目标
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1 下载2 下载3 下载4 下载5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是( )
圆锥的底面积是10,高是9,体积是( )
(二)教学例1
1、例1 一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?
学生独立计算,集体订正.
板书:
答:这个零件的体积是76立方厘米.
2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?
3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)
(1)已知圆锥的底面半径和高,求体积.
(2)已知圆锥的底面直径和高,求体积.
(3)已知圆锥的底面周长和高,求体积.
4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?
(三)教学例2
1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)
思考:这道题已知什么?求什么?
要求小麦的重量,必须先求什么?
要求小麦的体积应怎么办?
这道题应先求什么?再求什么?最后求什么?
2、学生独立解答,集体订正.
板书:(1)麦堆底面积:
=3.14×4
=12.56(平方米)
(2)麦堆的体积:
12.56×1.2
=15.072(立方米)
(3)小麦的重量:
735×15.072
=11077.92
≈11078(千克)
答:这堆小麦大约重11078千克.
3、教学如何测量麦堆的底面直径和高.
(1)启发学生根据自己的生活经验来讨论、谈想法.
(2)教师补充介绍.
a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径.