长沙开福区自安小学 石将敏
教学内容人教版第46~47页的例题3、例题4以及“做一做”课文第48页练习八的第1~2题)
教学目标
知识与技能 通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。
过程与方法 采用对比的方法。
情感态度与价值观培养学生的学习迁移能力和探究能力。
教学重点 体积单位间的进率。
教学难点 体积单位之间的名数的改写。
教学准备 教具:多媒体课件。准备一个1立方分米的正方体,这个正方体外表划分10×10×10的小方格。学具:每组学生准备一个1dm3的正方体,准备1cm3的正方体若干个。
教学过程
一、创设情境,引入新课
师:同学们,请动手量一下这个魔方的棱长,并计算出它的体积。
学生汇报:是216cm3。
师:老师也算出这个魔方的体积,只有0.216dm3大小。同学们,这究竟是怎么回事呢?
生:老师,我们计算出的魔方体积是以立方厘米作单位的,您计算的魔方体积是以立方分米作单位的。
师:你不仅很细心,而且还善于思考。现在,你们最想学习的是什么知识?
生:我们学过的体积单位间的进率是多少?
师:这节课,我就一起来探究体积单位间的进率。(板书课题)
二、探究新知
1、教学体积单位间的进率。
(1)棱长是1dm的正方体,它的体积是多少?
(2)想一想:1立方分米是多少立方厘米?
教师:观察1立方分米的正方体被平均10个小格,每个小格的边长是1厘米,照这样的边长切成的小正方体,它的体积1立方厘米。每一层可以切出10×10=100个小正方体,10层可以切出100×10=1000个小正方体。发现1立方分米里面含有1000个1立方厘米的小正方体,所以1dm3=1000cm3.
汇报:1dm3=1dm×1dm×1dm
=10cm×10cm×10cm
=1000cm3
(3)提问:你们能推算出1立方米等于多少立方分米吗?(1m3=1000dm3)
2、体积单位与面积单位以及长度单位之间的关系。
比较这三者之间的内在关系,找出规律。
单位名称 相邻两个单位
之间的进率
长度 分米、厘米 十进
面积 平方米、平方分米、平方厘米 百进
体积 立方米、立方分米、立方厘米 千进
3、出示课文第47页教学例题3。
(1)3.8m3是多少立方分米?
分析:从立方米--立方分米的转换是化还是聚?
1立方米=1000立方分米
3.8立方米是1立方米的3.8倍,也就是1000立方分米的3.8倍。
所以只要把3.8×1000=3800
从而得出:3.8m3=3800dm3
(2)2400cm3是多少立方分米?
分析:从立方厘米--立方分米的转换是化还是聚?
1000立方厘米=1立方分米
2400立方厘米里面包含有几个1000立方厘米,所以只要把2400÷1000=2.4
从而得出2400cm3=2.4dm3
(3)比较:这两道单位换算有什么不同?
前面一题是从高单位化低单位,后面一题是从低单位聚高单位。
提问:体积的单位换算应该怎样算?
小结:
化
高------------低
用进度乘以高级名数
聚
低------------高
用低级单位名数乘以进率
4、、教学例4
师:上面的问题解决了,这里还有一个有关包装的问题,大家先看一看,再想一想如何解决。(课件出示例4)
(师组织学生自己审题,使学生明确包装箱上的尺寸一般就是这个长方体的长、宽、高。再引导学生提出问题:这个牛奶包装箱的体积是多少?最后让学生独立完成并展示。)
生1: 50×30×40=60000(cm3)。
师:大家认为这位同学的解答怎么样?
生2:这位同学列式正确,但60000cm3比较麻烦,所以我最后就把它化成了60dm3。
生3:我的最后结果是0.06m3。
生4:我在计算前先把长度单位换成“分米”或“米”,这样计算时比较方例。5×3×4=60(dm3)。
……
师:同学们的结果都正确,如果在计算时题目没有要求用什么体积单位或所给的长度单位不统一时,我们可以根据实际需要选择比较合适的单位。大家想一想,针对这一个问题,选用哪个单位比较合适呢?
生:我认为选用立方分米比较合适。
师:大家的意见呢?
生齐:选用立方分米比较合适。
师:刚才同学们不但想出了多种求包装箱的体积方法,而且还能根据实际情况选用合适的单位,同学们真能干。
三、巩固练习
1、填空:
1 m3 =( )dm3 780 dm3=( )m3 12 dm3=( )cm3
( )cm3=3.4 dm3 0.4 m3=( )dm3=( )cm3
2、王芳家的书柜长90厘米,宽3厘米,高100厘米。这个书柜的体积是多少立方米?
3、完成教材第48页练习八的第1题。
四、全课总结:
请大家回忆一下,通过这节课的学习,你有什么收获?
旁批:
后记: