第一课时
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23-28页。
教材简析
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积;第二个红点部分是学习圆锥的体积。
教学目标:
1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。
3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。
教学过程:
一、创设情境,激趣引入。
谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)
课件出示:两个圆柱体冰淇淋。
谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?
(生猜测)这节课我们就来研究圆柱的体积。(板书课题--圆柱体的体积。)
二、回忆旧知,实现迁移。
谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?
(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)
三、利用素材,探索新知。
㈠交流猜测
谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?
生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?
师谈话:你的想法很好,怎样转化呢?
生讨论,交流。
生汇报,可能会有以下几种想法:
1.先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。
2.可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。
3.如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。
谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。
㈡实验验证
学生动手进行实验。
谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。
学生合作操作,集体研究、讨论、记录。
四、分析关系,总结公式
1.全班交流
谈话:哪个小组愿意展示一下你们小组的研究结果?
引导学生发现:
转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。
2.分析关系
引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
3.总结公式。
谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。
(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)
谈话:你发现了什么?
引导观察:分的份数越多,拼成的图形就越接近长方体。
(课件动态演示:圆柱的高--长方体的高,圆柱的底面积--长方体的底面积。)
谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。
根据学生的回答教师板书:
长方体的体积 = 底面积 × 高
圆柱的体积 = 底面积 × 高
谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh
五、利用公式,解决问题。
自主练习第1题、第2题、第3题
六、课堂总结
第二课时
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23-28页。
教材简析:
该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积;第二个红点部分是学习圆锥的体积。
教学目标:
1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。
3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。
教学过程:
一、串联情境 唤醒旧知。
1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。你能说说如何求圆柱的体积吗?计算公式是怎样推出的?
2.口答练习:
你能借助公式计算下面圆柱的体积吗?
(1)底面半径 15厘米,高8厘米。
(2)底面直径 6米,高18米。
二、巧用公式,解决问题。
1.出示课后练习第3题。
在美国加利福尼亚洲发现了一棵高达142米的巨衫。它的树干上下几乎一样粗,横截面周长约是38米。
师谈话:你能提出什么问题?
生:树干的体积会是多大呢?
师:知道了树干横截面的周长,该如何求体积呢?
2.学生独立解答。
3.交流算法。
4.师生总结解决此类问题的步骤:
(1)根据周长求出底面的半径。
(2)根据半径求出底面的面积。
(3)根据体积公式求出树干的体积。
三、综合练习,统一公式。
1.出示课后练习第10题:计算下面图形的体积。
2.交流算法。
3.师谈话:你能把上面三种图形的体积公式统一成一个吗?
引导发现:体积=底面积×高
四.拓展练习,提高能力。
1.出示练习第12题。
引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。
2.出示练习13题。
(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。
(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。
3.课后思考:练习第14题。
第三课时
教学内容:
青教版九年义务教育六年制小学数学六年级下册第23-28页。
教学目标:
1. 结合具体情境,通过探索与发现,理解并掌握圆柱、圆锥体积的计算方法,并能解决简单的实际问题。
2. 经历探索圆柱、圆锥体积计算公式的过程,进一步发展空间观念。
3. 在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。
教学重点和难点:
圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。
教具准备:多媒体课件、圆锥、圆柱体积学具、沙子等。
一、创设情境,提出问题。
谈话:在炎热的夏季里,同学们一定很喜欢吃冰淇淋吧!(出示课件),看:超市里正在搞促销活动呢,圆柱形的冰淇淋每个5元,圆锥形的冰淇淋每个2元。(图中圆柱形和圆锥形的雪糕是等底等高的。)用10元钱怎样买冰淇淋最合算呢?
谈话:要解决这个问题,需要先解决哪些问题?你有什么困难吗?
谈话:是啊,今天我们就一起来学习 “圆锥的体积”,相信你一定会自己找到答案的。引出课题:圆锥的体积
二、猜想验证、研究问题。
1、引导猜想:
谈话:请同学们猜测一下,圆锥的体积可能与什么有关系?有怎样的关系?
2、实验验证:
①分组实验,验证猜想:
谈话:下面,请同学们利用老师提供的实验材料分组操作,自己找一找屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
课件出示思考题:
(1) 通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2) 你们的小组是怎样进行实验的?
学生分组操作实验,教师巡回指导。(其中多数小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。
同组的学生做完实验后,进行交流,并把实验结果填写在表格中。
②汇报交流。
展示不同的结论
⑴请这几个小组同学说出他们是怎样通过实验得出这一结论的?(圆锥的体积是等底等高的圆柱体积的 。)
⑵讨论:哪个小组得出的结论更加科学合理一些?
(请他们拿出实验用的器材,自己比划、验证这个结论。)
⑶引导学生自主修正另外两个结论。
③总结圆锥体积的计算方法:V= Sh
④回归课前问题:你能分别算出这两个冰淇淋的体积吗?在练习本上试一试吧。
谈话:用10元钱怎样买冰淇淋最合算?说说你是怎样想的?
三、应用公式、解决问题。
1、判断。
① 圆锥的体积等于圆柱体积的 。 ( )
② 两个体积相等的等底圆柱和圆锥, 圆锥的高一定是圆柱高的3倍。 ( )
③ 一个圆锥形物体,底面积是 a 平方米,高是 b 米,它的体积是 ab 立方米。 ( )
④ 把一根圆体木头,削成一个最大的圆锥体, 削去体积是圆锥体积的2倍。 ( )
2、求下列各圆锥的体积:
a、底面面积是7.8平方米,高是1.8米;
b、底面半径是4厘米,高是21厘米;
c、底面直径是6分米,高是6分米;
3、解决问题。
① 一堆圆锥形的煤堆,底面半径是 1.5 米,高是 1.2 米。如果每立方米煤约重 1.4 吨,这堆煤有多少吨?
②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?
四、全课总结
谈话:通过本节课的学习,你有哪些收获?