第一单元倍数与因数(在自然数(0除外)范围内研究倍数和因数。) 教案教学设计(人教新课标五年级上册)

发布时间:2016-8-2 编辑:互联网 手机版

 

1、像0、1、2、3、4、5、6……这样的数是自然数。  

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、※一个数只有1和它本身两个因数,这个数叫质数。

※一个数除了1和它本身以外还有别的因数,这个数叫合数。

※1既不是质数,也不是合数。

20以内的质数和合数: 

质数:2、3、5、7、11、13、17、19

合数:4,6,8,10,12,14,15,16,18,20

1既不是质数也不是合数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的;

②最小的倍数是它本身; ③没有最大的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的;

                     ②最小的因数是1;③最大的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。

    既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数

   既是3的倍数又是5的倍数的特征:①个位是0或5的数;

  ②各个数位上的数字的和是3的倍数

  既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数

  9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。

14、按一个数的因数个数分,自然数可以分为三类:质数、合数和1。

第二单元  图形的面积(一)

1、         长方形周长=(长+宽)×2               C = 2 ( a + b )

2、        长方形面积=长×宽                        S = a b

3、         正方形周长=边长×4                       C = 4 a

4、         正方形面积=边长×边长                    S = a 2

5、         平行四边形面积=底×高                    S = a h

6、         平行四边形底=面积÷高                    a = S ÷ h

7、         平行四边形高=面积÷底                    h = S ÷ a

8、         三角形面积=底×高÷2            S = a h ÷ 2

9、         三角形底=面积×2÷高           a = 2 S ÷ h

10、      三角形高=面积×2÷底           h = 2 S ÷ a

11、    梯形面积=(上底+下底)×高÷2    S = ( a + b ) h ÷ 2

12、   梯形高=梯形面积×2÷(上底+下底)  h = 2 S ÷( a + b )

13、      梯形上底=梯形面积×2÷高-下底  a = 2 S ÷ h - b

14、      梯形下底=梯形面积×2÷高-上底  b = 2 S ÷ h - a

15、      1平方千米=100公顷=1000000平方米

16、      1公顷=10000平方米

17、      1平方米=100平方分米=10000平方厘米

第三单元  分数

1、分数:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把整体“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

3、真分数:分子小于分母的分数叫做真分数。真分数小于1。

4、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

5、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

6、 几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。用短除法求最大公因数。

7、 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:

(1)    相邻的自然数互质;

(2)    相邻的奇数都是互质数;

(3)    1和任何数互质;

(4)    两个不同的质数互质

(5)    2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

8、  几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。用短除法求最小公倍数。

9、      

关系 最大公因数 最小公倍数

倍数关系 较小数 较大数

互质关系 1 他们的乘积

一般关系 短除法 短除法

10、  分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

11、   约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

12、   通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

13、      如何比较分数的大小:

        分母相同时,分子大的分数大;

        分子相同时,分母小的分数大;

        分子分母都不同时,通分再比。

14、  分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

15、   的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。

数学与交通:

1、    相遇问题:

基本公式:一个人走:速度×时间=路程

        两个人同时相对而行:速度和×相遇时间=两人共走路程

甲走的路程+乙走的路程=两人共走的路程

2、       旅游费用:

①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起来购票。若只有A、B两种方案是,只要选择其中一种价格便宜的就行。

②租车问题: 两个原则:一是尽量多的使用更便宜的车;

                      二是空位越少越好。

3、  看图找关系:

①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。

②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。

③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。

第四单元  分数加减法

1、异分母分数加减法方法:先通分,化成同分母分数,再按照同分母分数加减法的方法进行计算。

2、分数加减法对计算结果的要求:能约分的要约分,一定要约成最简分数。

3、分数化成小数的方法:用分子除以分母,除不尽的,按题目要求保留一定位数的小数,没有要求时,一般保留三位小数。

4、小数化成分数的方法:看小数部分有几位,就在1后面加几个零做分母,去掉小数点做分子,能约分的要约分。

第五单元  图形的面积(二)

1、求组合图形面积的方法:

① 分割法:根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。

② 添补法:将图形所缺部分进行添补,组成几个基本图形。基本图形面积-添补的图形面积=组合图形面积。

2、不规则图形面积的估计与计算:

①数格子的方法;

②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。

鸡兔同笼:

方法:①列表法:一般采用取中间数列表的方法;

      ②画图法;

      ③假设法;

      ④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。

点阵中的规律:

1、数与数之间的变化规律:根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。

2、图形与图形之间的变化规律:观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。

第六单元  可能性大小

1、确定事件的表示方法:用1表示事件一定发生,用0表示事件一定不会发生。

2、可能出现的事件的表示方法:用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。

3、设计活动方案:充分认识用来表示可能性的分数的含意,即:事件可能出现的所有情况作分母,把可能出现的结果做分子。

铺地砖:

1、长方形的面积=长×宽,  正方形的面积=边长×边长

2、面积单位之间的关系:1平方米=100平方分米=10000平方厘米

                      1平方分米=100平方厘米

3、求地面铺地砖总块数的方法:

①用房间面积÷每块地砖的面积=所铺地砖的块数

②用每平方米所需的块数×房间总面积=所铺地砖的块数

③看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,

④用方程解

⑤所注意的问题:最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。