教学目标:
1、通过观察、分析、比较等使学生理解分数乘分数的算理及计算法则也适用于分数和整数相乘,进一步掌握分数乘法的计算法则;并会运用计算法则比较熟练地进行计算。
2、通过练习,培养学生迁移、比较、类推和概括的能力,提高计算水平。
3、激发学生的学习兴趣,培养学生良好的学习习惯,渗透辨证唯物主义的启蒙思想。
教学重点:统一计算法则
教学难点:提高计算的正确率
教学过程
一、基础练习
1.计算下面各题,并说一说计算方法。
2.把下面的整数改写成分数。
2=( ) 5=( )
14=( ) 25=( )
二、练习指导
1.统一计算法则。
(1)到目前为止,你学会了哪些分数乘法的知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?
(2)请你试算一算:
(学生小组合作学习,教师巡视。)
学生边展示计算过程,边阐述理由。
(3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。
2.书写形式。
(1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的分子相乘,不必把整数化成分母是1的分数。
(2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。
三、实践应用
1.练习二的第6题。
2.练习二的第8题。
第(1)题明确:整数4可以看作分母是1的分数,而不能用分子和分子或分母和分母约分。
第(2)题明确:约分后,分子相乘的积作分子,分母相乘的积作分母,不能相加。
3.练习二的第10题。
四、小结作业
这节课你知道了什么?
1:练习二的第5、7、9、11题。
课后作业:必做作业本P5/1、2、3、4、5、
回家作业:必做课时特训P9-P10/1、2、3、5、6、
选做课时特训P9-P11/4、思维拓展
(4)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)36×2+15 (2)5×6+7×3 (3)15×(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) + × (2) × - (3) - × (4) × +
2、复习整数乘法的运算定律
(1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:25×7×4 0.36×101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: × × ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: + × ,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 ×4和 ×4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
四、作业
课后作业:必做作业本P6/1、2、3、4、
回家作业:必做课时特训P11-P13/1、2、3、4、
选做课时特训P13/思维拓展