1、 比例尺
图上距离和实际距离的比,叫做这幅图的比例尺。
5、正比例和反比例的区别与联系
相同点 不同点
特征 关系式
正比例关系 两种相关联的量,一种量变化,另一种量也随着变化 两种量中相对应的两个数的比值一定 у
х
反比例关系 两种量中相对应的两个数的积一定
ху=k (一定)
应 用 题
(一) 一般复合应用题
1、一般复合应用题的解法
(1)分析法:从问题入手,逐步分析题里的已知条件。
(2)综合法:从应用题的已知条件,逐步推向未知,直到求出解。
(3)分析综合法:将分析法、综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题便解决了。
2、 一般复合应用题的解题步骤:
(1)审清题意,并找出已知条件和所求问题;
(2)分析题目里的数量间的关系,从而确定先算什么,再算什么,最后算什么;
(3)列式,算出结果;
(4)进行检验,写出答案。
(二)典型应用题(有一定解答规律的应用题)
1、求平均数问题
(1) 求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。
(2) 求平均数问题的解题规律:关键是先求出“总量”和“总份数”,然后用总量/总份数=平均数,特殊情况可用“移多补少法”解答
2、归一应用题
(1) 归一应用的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一。
(2) 归一问题的解题规律:首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解
3、相遇问题
(1)特点:A两个运动物体;B运动方向相向;C运动时间同时。
(2)解题规律:速度和×相遇时间=路程
路程 ÷速度和=相遇时间
路程 ÷相遇时间=速度和
(三)分数、百分数应用题
1、 分数乘法应用题
已知一个数,求它的几分之几(百分之几)是多少,用乘法。即:“一个数×几分之几(百分之几)”。
特征: 已知条件:表示单位“1”的量;单位“1”的几分之几(或百分之几)(分率)
所求问题:求单位“1”的几分之几(百分之几)是多少(分量)
用等式表示三量的关系:单位“1”的量×分率=分量
对应关系
2、分数除法应用题
(1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”
已知条件:单位“1”的几分之几(分率);单位“1”的几分之几是多少(分量)
特征
所求问题:单位“1”的量
用等式表示三量的关系:分量÷分率=单位“1”的量
对应关系
(2)求一个数是另一个数的几分之几(百分之几)用除法。
即“一个数÷另一个数”。
已知条件:表示单位“1”的量;单位“1”的几分之几是多少(分量)
特征
所求问题:求分量是单位“1”的几分之几(百分之几)
用等式表示三量的关系:分量÷单位“1”的量=分率
对应关系
3、工程问题的应用题
把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成工作时间
三量之间的关系式:工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间= 工作效率
4、列方程解应用题xkb1.com
(1) 列方程解应用题的思考方法:用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。
(2) 列方程解应用题的一般步骤
A 、弄清题意,找出未知数并用X表示。
B 、找出数量间的相等关系,列方程。
C 、解方程。
D 、检验,答。
5、比和比例应用题
比和比例应用题包括:比例尺、按比例分配、和正反比例应用题。
(1) 比例尺中解题关系式:图上距离∶实际距离=比例尺
(2) 按比例分配应用题 :要分配的量×各部分量的分率=各部分量。
(3) 正比例 у/χ=X/Y 反比例χу=XY
量与计量
1、量、计量和计量单位的意义
事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
2、常用的计量单位及其进率
(1)长度、面积、地积、体积、容积、重量单位及其进率
长度 1千米=1000米 1米 =10分米
1分米=10厘米 1厘米=10毫米
面积 1平方千米=1000000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米 地积 1平方千米=100公顷
1公顷=10000平方米
体积 1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米 容积 1升=1000毫升
1立方分米=1升
1立方厘米=1毫升
重量 1吨=1000千克 1千克=1000克
(2)常用时间单位及其关系
世纪 年 月 日 时 分 秒
100 12 24 60 60
大月:1、3、5、7、8、10、12 31
小月:4、6、9、11 30
平年2月
闰年2月 28
29
3、同类计量单位之间的化聚
(化法)乘进率
高级单位的数 低级单位的数
(聚法)除以进率