教学内容:
期中复习及考前模拟
复习要点:
(一)数与代数
1、百分数的应用
百分数的应用是在六年级(上册)认识百分数的基础上编排的,是本册教材的重点内容之一。要联系实际解决一些求一个数比另一个数多(或少)百分之几的问题,解决较简单的有关纳税、利息、折扣的问题,解决已知一个数的百分之几是多少,求这个数的问题。通过这些内容的教学,能让学生进一步理解百分数的意义,学会在日常生活中应用百分数。
2、比例的有关知识
比例的知识有比例的意义、比例的基本性质和解比例。这些知识有助于理解图形的放大与缩小,能用来解决有关比例尺的问题。
3、成正比例和成反比例的量
教学正比例和反比例,着重理解正比例的意义和反比例的意义,让学生在现实的情境中作出相应的判断。根据《标准》的精神,教材适当加强了正比例关系图像的教学,不再安排解答正比例或反比例的应用题。
(二)空间与图形
1、圆柱和圆锥
圆柱与圆锥是本册教材的又一个重点内容,包括圆柱和圆锥的形状特征,圆柱的表面积及计算方法,圆柱和圆锥的体积及计算方法等知识。
2、图形的放大或缩小
图形的放大和缩小是小学数学新增加的教学内容,让学生初步了解图形可以按一定的比例发生大小变换。这个内容安排在第三单元里,结合比例的知识进行教学。
3、确定位置等内容
确定位置也是新增的教学内容,在初步认识方向的基础上,用“北偏东几度”“南偏西几度”的形式量化描述物体所在的具体方向,还要联系比例尺的知识,用“距离多少”的形式描述物体所在的位置。
知识点梳理
(一)数与代数
1、百分数的应用
(1)求一个数比另一个数多(少)百分之几的实际问题
①要点:一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数
②例题:六年级男生有180人,女生有160人,男生比女生多百分之几?女生比男生少百分只几?
男生比女生多的人数 ÷ 女生人数 = 百分之几 (180 - 160)÷ 160 = 12.5%
女生比男生少的人数 ÷ 男生人数 = 百分之几 (180 - 160)÷ 180 ≈ 11.1%
(2)纳税问题
①要点:应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,
应纳税额 = 收入 × 税率
②例题:张强编写的书在出版后得到稿费1400元,稿费收入扣除800元后按14%的税率缴纳个人所得税,张强应该缴纳个人所得税多少元?
(1400 - 800)×14% = 84(元)
(3)利息问题
①要点:存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。税前应得利息 = 本金 × 利率 × 时间
②例题:叔叔今年存入银行10万元,定期二年,年利率4.50% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗?
100000 × 4.5% × 2 × (1 - 5%) = 8550(元)
8550元 > 6000元 得到的利息能买一台6000元的电脑
(4)有关折扣问题
①要点:几折就是十分之几,也就是百分之几十。商品现价 = 商品原价 × 折数。
②例题:一种衣服原价每件50元,现在打九折出售,每件售价多少元?
九折就是90%,50×90%=50×0.9=45(元)
例题:一种衣服现在打九折出售,现在售价是45元,每件的原价是多少元?
九折”就是90%,ⅹ×90% = 45 ⅹ=50
(5)列方程解稍复杂的百分数实际问题
①要点:解答稍复杂的百分数应用题和稍复杂的分数应用题的解题思路、解题方法完全相同;解答“已知比一个数多(少)百分之几的数是多少,求这个数”的实际问题,可以根据数量间的相等关系列方程求解;或者根据除法的意义,直接解答。
②例题:果园里的梨树和苹果树共有360棵,其中的苹果树的棵树是梨树的棵树的20%。苹果树和梨树各有多少棵?
解:设梨树有x棵,苹果树有20%x棵
x + 20%x = 360 x = 300
20%x = 300 × 20% = 60
答:梨树有300棵,苹果树有60棵。
例题:某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?
解:设五月份用煤x吨
x - 25%x = 60 x = 80
答:五月份用煤80吨。
2、比例的有关知识
(1)比例的意义
①要点:表示两个比相等的式子叫做比例。
②例题:应用比例的意义判断6.4 : 4和9.6 : 6能否组成比例?
因为:6.4 : 4 = 6.4 ÷ 4 = 1.6 9.6 : 6 = 9.6 ÷ 6 = 1.6
所以:6.4 : 4 = 9.6 : 6
(2)比例的基本性质
①要点:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项;在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
②例题: 3 :8 = 18 :48 3 × 48 = 8 × 18
内项
外项
例题:运用比例的基本性质判断3.6 :1.8和0.5 :0.25能否组成比例?
因为 3.6 × 0.25 = 0.9 1.8 × 0.5 = 0.9
所以 3.6 :1.8 = 0.5 :0.25
例题:从12的因数中任意选出4个数,再组成8个比例式。
因为:12 = 1 × 12 = 2 × 6 = 3 × 4
所以从12的因数中任意选出两组4个数并运用比例的基本性质可以组成8个不同的比例。 2 × 6 = 3 × 4
(2)︰(3)= (4)︰(6) (3)︰(2)= (6)︰(4)
(2)︰(3)= (4)︰(6) (3)︰(2)= (6)︰(4)
(6)︰(4)= (3)︰(2) (4)︰(6)= (2)︰(3)
(6)︰(4)= (3)︰(2) (4)︰(6)= (2)︰(3)
(3)解比例
①要点:根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。求比例的未知项,叫做解比例。
②例题:3 : 8 = ⅹ : 40 =
8ⅹ = 3 × 40 4.5ⅹ = 9 × 0.8
8ⅹ = 120 4.5ⅹ = 7.2
ⅹ = 15 ⅹ = 1.6
(4)比例尺
①要点:图上距离和实际距离的比,叫做这幅图的比例尺。
比例尺 = ,比例尺有两种形式:数值比例尺和线段比例尺。
②例题:在一幅某乡农作物布局图上,20厘米表示实际距离16千米。求这幅图的比例尺。
16千米 = 1600000厘米
=
例题:说出下面比例尺表示的意思。
这是线段比例尺,它表示图上1厘米的距离代表实际距离200千米。
例题:在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?
方法1、12.5×500000 = 6250000(厘米)= 62.5(千米)
方法2、2.5×5 = 62.5(千米)
方法3、12.5 ÷ = 12.5×500000 = 6250000(厘米)= 62.5千米
解:设甲、乙两城实际相距ⅹ厘米。
=
1ⅹ = 12.5 × 500000
ⅹ = 6250000
6250000(厘米)= 62.5千米
(5)面积变化
①要点:把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( )后,放大(或缩小)后与放大(或缩小)前图形的面积比是n:1(或1:n)。
②例题:下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
= = × = 9 : 1 = 3 : 1
大长方形与小长方形面积的比是9 : 1。
3、成正比例和成反比例的量
(1)正比例的意义和图像
①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示: = K(一定)用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?
表格1
数量/本 1 3 6 8 10 20 ……
总价/元 4 12 24 32 40 80 ……
= 4, = 4, = 4 ……
因为 = 单价(一定),所以单价一定时,总价和数量成正比例。
例题:在圆柱的侧面积、底面周长、高这三种量中
当( )一定时,( )与( )成正比例;
当( )一定时,( )与( )成正比例。
例题:某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
造纸时间/时 1 2 3 4 ……
造纸吨数/吨 1.5 ……
根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。 吨数/吨
6
5
4
3
2
1
0
1 2 3 4 5 6 7 时间/时
造纸吨数与造纸时间成正比例吗?为什么?
因为 = 每小时造纸吨数(一定),所以每小时造纸吨数一定时,造纸吨数与造纸时间成正比例。
根据图像判断,5小时造纸多少吨?
根据图像判断,5小时造纸7.5吨
(2)反比例的意义
①要点:两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K(一定)。
②例题:仔细观察下表,思考表格中两种量之间有关系吗?有什么关系?为什么?用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
单价/元 1.5 2 3 4 5 6 ……
数量/本 40 30 20 15 12 10 ……
1.5 × 40 = 60 ,2 × 30 = 60 ,4 × 15 = 60 ……
因为单价 × 数量 = 总价(一定),所以总价一定时,单价和数量成反比例。
例题:在圆柱的侧面积、底面周长、高这三种量中当( )一定时,( )与( )成反比例。
(二)空间与图形
1、圆柱和圆锥
(1)圆柱和圆锥的特征
圆柱 圆锥
底面 两个底面完全相同,都是圆形。 一个底面,是圆形。
侧面 曲面,沿高剪开,展开后是长方形。 曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。
(2)圆柱的表面积和体积
①要点:圆柱的侧面积 = 底面周长 × 高
圆柱的表面积 = 侧面积 + 底面积 × 2
圆柱所占空间的大小是圆柱的体积,圆柱的体积(容积) = 底面积 × 高,用含有字母的式子表示是:V = sh 或者V = лrh 。
②例题:用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)
侧面积:3.14 × 3 × 15 = 141.3(平方分米)≈ 142(平方分米)
例题:一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部 抹上水泥。如果每平方米要用水泥20千克,一共要用多少千克水泥?
底面积:25.12 ÷ 3.14 ÷ 2 = 4(米)
3.14 × 4 = 50.24(平方米)
侧面积:25.12 × 4 = 100.48(平方米)
表面积:50.24 + 100.48 = 150.72(平方米)
水泥质量: 150.72 × 20 = 3014.4千克
例题:在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?
3.14 ×(0.8÷2) × 2 × 60 = 60.288(立方米)
(3)圆锥的体积
①要点:圆锥所占空间的大小是圆锥的体积,圆锥的体积是与它等底等高的圆柱体积的三分之一。即V = sh 或者V = лrh 。
②例题:一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
例题:把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
例题:一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
×3.14 ×2 ×1.5×1.8 = 11.304(吨)
2、图形的放大或缩小
①要点:把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。
②例题:一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。
一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图片的长是( 4 )厘米,宽是( 3 )厘米,这张图片( 形状 )不变,大小( 变了 )。
例题:一块正方形的花手帕,边长10厘米,将其按( )的比放大后,边长变为30厘米。
一块正方形的花手帕,边长10厘米,将其按(3 : 1 )的比放大后,边长变为30厘米。
例题:按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
3、确定位置等内容
①要点:知道了物体的方向和距离,就能确定物体的位置。
根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
②例题:下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。
电影院
●30
● ●
40 广场 公园
● 商店
公园在广场的东面( 0.75 )千米处。
量得公园到广场的图上距离是1.5厘米,1.5×50000 = 75000厘米 = 0.75千米
电影院在广场的( 北 )偏( 东 )( 60 )方向( 0.75 )千米处。
商店在广场的( 南偏西 50方向1.5千米处 )。量得商店到广场的图上距离是3厘米
例题:下图是某市旅游1号车行驶的线路图,请根据线路图填空。
旅游1号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。
由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( )( )的方向行( )千米到达人民公园。
旅游1号车从起点站出发,向( 东 )行驶到达青水公园,
再向( 北 )偏(东)(40)的方向行(1.8 )千米到达抗战纪念碑。
由绿博园向南偏(东)(60)的方向行(1.7)千米到达购物中心,再向北偏( 东 )(70)的方向行(1.5)千米到达人民公园。
小学数学总复习专题讲解及训练(九)
模拟试题
一、填空。
1、( )÷15=0.8=( )%=( )成
2、篮球个数是足球的125%,篮球比足球多( )%。
3、一个圆锥的体积是76立方厘米,底面积是19平方厘米。这个圆锥的高是( )厘米。
4、如果3a=4b,那么a : b = ( ):( ) 。
5、 一个直角三角形中,两个锐角度数的比是3 : 2 ,这两个锐角分别是( )度、( )度。
6、 12的约数中可以选出4个数组成一个比例,请你写出比值不同的两组:( )、( )。
7、 一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是( )。
8、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,圆柱的体积是( )立方厘米。
9、一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( )厘米,高为( )厘米的( )体,它的体积是( )立方厘米。
10、 如左图所示,把一个高为10厘米的圆柱切成若干等分,拼成一个近似的长方体。如果这个长方体的底面积是50平方厘米,那么圆柱体积是( )立方厘米
二、选择。
1、圆的面积和它的半径 . A、成正比例 B、成反比例 C、不成比例
2、下列说法正确的有 。
A、表示两个比相等的式子叫做比例。 B、互质的两个数没有公约数。
C、分子一定,分数值和分母成反比例。D、圆锥的体积等于圆柱体积的 。
3、圆柱的底面半径扩大2倍,高不变。它的底面积扩大 倍,侧面积扩
大 倍,体积扩大 倍。A 2 、 B 4 、 C 8 、 D 16
4.六(2)班人数的40%是女生,六(3)班人数的45%是女生,两班女生人数相等。那么六(2)班的人数_____六(3)班人数。 A. 小于 B. 等于 C .大于 D.都不是
5.把一团圆柱体橡皮泥揉成一个与它等底的圆锥体,高将 _______
A.扩大3倍 B.缩小3倍 C.扩大6倍 D.缩小6倍
三、计算。
1、用递等式计算。(12分)
0.16+4÷( - ) 1.7+3.98+5 4.8×3.9+6.1×4
2、解方程。(6分)
2X+3×0.9=24.7 0.3 :x=17 :51 =0.5
四、画一画。(5分)
学校的操场长150米,宽60米,请你根据比例尺在下面的空白处画出操场的平面图。(并请你标明比例尺及长宽的厘米数) (1:3000)
五、解决实际问题(25分)
1、下面是张大爷的一张存单,如果到期要交5%的利息税,他的存款到期时实际可得多少元利息?
2、一个圆柱形的无盖水桶,底面半径4分米,高6分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数);如果用来装水,可以装多少千克水?(每升水重1千克)
3、一条公路已经修了它的 ,再修300米,就修好这条公路的一半。这条公路长多少米?
4.有一个近似的圆锥形砂堆重3.6吨,测得高是1.2米,如果每吨砂的体积是0.6立方米。这堆砂的底面积是多少平方米?
5、用塑料绳捆扎一个圆柱形的蛋糕盒(如下图),打结处正好是底面圆心,打
结用去绳长25厘米。
(1)、扎这个盒子至少用去塑料绳多少厘米?
(2)、在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?
参考答案:
一、填空。
1、( 12 )÷15=0.8=( 80 )%=( 八 )成
2、篮球个数是足球的125%,篮球比足球多( 25 )%。
3、一个圆锥的体积是76立方厘米,底面积是19平方厘米。这个圆锥的高是(12)厘米。
4、如果3a=4b,那么a : b = ( 4 ):( 3 ) 。
5、一个直角三角形中,两个锐角度数的比是3 : 2 ,这两个锐角分别是(54)度、(36)度。
6、12的约数中可以选出4个数组成一个比例,请你写出比值不同的两组:
( 2 :3 = 4 :6 )、( 1 :3 = 4 :12 )。
7、一个比例里,两个外项正好互为倒数,其中一个内项是2.5,另一个内项是( 0.4 )。
8、一个圆柱的底面半径为2厘米,侧面展开后正好是一个正方形,圆柱的体积是( 157.7536 )立方厘米。
9、一个长为6厘米,宽为4厘米的长方形,以长为轴旋转一周,将会得到一个底面直径是( 8 )厘米,高为(6)厘米的( 圆柱 )体,它的体积是( 301.44 )立方厘米。
10、 如左图所示,把一个高为10厘米的圆柱切成若干等分,拼成一个近似的长方体。如果这个长方体的底面积是50平方厘米,那么圆柱体积是( 500 )立方厘米。
二、选择。
1、圆的面积和它的半径 C . A、成正比例 B、成反比例 C、不成比例
2、下列说法正确的有 A C 。
A、表示两个比相等的式子叫做比例。 B、互质的两个数没有公约数。
C、分子一定,分数值和分母成反比例。D、圆锥的体积等于圆柱体积的 。
3、圆柱的底面半径扩大2倍,高不变。它的底面积扩大 B 倍,侧面积扩
大 A 倍,体积扩大 B 倍。A 2 、 B 4 、 C 8 、 D 16
4.六(2)班人数的40%是女生,六(3)班人数的45%是女生,两班女生人数相等。那么六(2)班的人数___ C __六(3)班人数。 A. 小于 B. 等于 C .大于 D.都不是
5.把一团圆柱体橡皮泥揉成一个与它等底的圆锥体,高将 ____ A ___
A.扩大3倍 B.缩小3倍 C.扩大6倍 D.缩小6倍
三、计算。
1、用递等式计算。(12分)
0.16+4÷( - )= 32.16 1.7+3.98+5 = 10.98 4.8×3.9+6.1×4 =48
2、解方程。(6分)
2X+3×0.9=24.7 0.3 :x=17 :51 =0.5
X = 11 X = 0.9 X = 6.4
四、画一画。(5分)
学校的操场长150米,宽60米,请你根据比例尺在下面的空白处画出操场的平面图。(并请你标明比例尺及长宽的厘米数) (1:3000)
长:150米 = 15000厘米 15000 × = 5厘米
宽:60米 = 6000厘米 6000 × = 2厘米
2厘米
5厘米 比例尺:
五、解决实际问题(25分)
1、下面是张大爷的一张存单,如果到期要交5%的利息税,他的存款到期时实际可得多少元利息?
5000 ×5.22% × 3 × (1 - 5%) = 743.85(元)
2、一个圆柱形的无盖水桶,底面半径4分米,高6分米,至少需要用多少平方分米的铁皮?(用进一法取近似值,得数保留整数);如果用来装水,可以装多少千克水?(每升水重1千克)
3.14 ×4 + 3.14 ×4 × 2 × 6 = 200.96(平方分米)≈ 201(平方分米)
3.14 × 4 × 6 = 301.44立方分米 = 301.44升 = 301.44千克
3、一条公路已经修了它的 ,再修300米,就修好这条公路的一半。这条公路长多少米?
解:设这条公路长X米 50%X - X = 300 X = 3000
4.有一个近似的圆锥形砂堆重3.6吨,测得高是1.2米,如果每吨砂的体积是0.6立方米。这堆砂的底面积是多少平方米?
解:设这堆砂的底面积是X平方米 × X × 1.2 = 0.6 × 3.6 X = 5.4
5、用塑料绳捆扎一个圆柱形的蛋糕盒(如下图),打结处正好是底面圆心,打
结用去绳长25厘米。
(1)、扎这个盒子至少用去塑料绳多少厘米?
(2)、在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?
(1)、(50 + 15)× 2 × 2 + 25 = 285厘米
(2)、3.14 × 50 × 15 = 2355平方厘米