比例的应用(比例尺) 教案教学设计(人教新课标六年级下册)

发布时间:2016-3-19 编辑:互联网 手机版

 

教学内容:教科书第6~8页的例4~例6,练习二的第1题。 

教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。 

教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。

教学难点:设未知数时长度单位的使用。

教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。 

教学过程: 

  一、复习

    1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。

    1米=(    )分米=(     )厘米=(      )毫米

    1千米=(     )米=(      )厘米

    2.什么叫做比?

    3.化简下面各比。        12 :8          10厘米:100厘米     

     2米:140厘米    3米:15千米        16厘米:90千米

二、新课 

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。 

1.教学比例尺的意义。 

(1)教学例4。 

设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。

让学生读题。指名回答: 

“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。) 

“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离 

“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下: 

图上距离 :实际距离 

10厘米 :    10米 

“10厘米和10米的单位相同吗?能直接化简吗?” 

教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。 

“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。) 

“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。 

“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式: 

图上距离 :实际距离 

    10  :  1000 

请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。 

然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或 

图上距离 =比例尺

实际距离

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。 

教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。 

最后教师指出: 

①比例尺与一般的尺不同,这是一个比,不应带计量单位。 

②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。 

③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=  

(2)巩固练习。 

让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。 

2.教学根据比例尺求图上距离或实际距离。 

教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。 

(1)教学例5。 

在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米? 

指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。) 

教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。 

“这道题的图上距离是多少?”板书:15 

“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。 

“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。 

“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式: 

15 =    1   

x 6000000

指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答: 

“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。 

之后,再回忆一下解答过程。 

(2)巩固练习。 

做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。 

(3)教学例6。 

出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是 的图纸上,长和宽各应画多少厘米? 

指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。) 

教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少? 

然后让学生求x的值,并说出求解过程,教师板书出来。 

“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。 

三、练习

1、比例尺=(         )          实际距离=(                )              图上距离=(                 )

    2.2.5米=(         )厘米         0.00006千米=(            )厘米      0.032米=(        )厘米             350000厘米=(             )千米              3.5千米=(           )厘米

1、 独立完成练习二第1题,并订正。

2、 完成练习二的第2题、3题。

第3题,让学生先想想比例尺子 表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。