一、 指导思想:
1、落实双基
把学生小学阶段所学的分散的数学知识加以系统化整理,勾通知识间的联系,形成知识网落,针对学生的实际查漏补缺,弥补知识的缺陷。
2、培养能力
以《课标》精神为指导,把握教材特点, 复习时要加强综合性,实践性,体现现实的、生活的、有意义的数学学习,体现学生的自主学习、探究学习、合作学习,通过复习提高学生的思维能力,发展学生的情感态度与价值观,培养学生的创新精神和实践能力。
3、加强评价
复习时要注意反思与评价。通过反思(学习过程与教学过程的反思)查找不足,弥补缺漏。通过评价(特别是形成性评价)促进学生学习的自主性、主动性和发展性。
二、 复习范围:
以十二册教材第四单元涉及的复习内容为主。本单元内容不仅是本册教材的一个重点,它也是全套教材的一个重要组成部分。
本单元教材把全部小学数学内容划分为四部分。
1、“数与代数”、“空间与图形”、“统计与可能性”和“综合应用”4个领域。
这四部分内容,按照知识间的联系,加以编排,使所学的数学基础知识、基本技能比较完整和系统化。复习时需要教师根据本班学生的实际情况,认真制定复习计划。
三、复习的要点及要求:(数与代数)
1、数和数的运算
(1)数的意义;(2)数的读法和写法;(3)数的改写;(4)数的大小比较;(5)数的整除;(6)分数、小数的基本性质;(7)四则运算意义、法则、运算定律与简便算法、四则混合运算。
(1)数的意义包含的知识点
①自然数、整数;②分数;③百分数;④小数;⑤循环小数。
要求:理解并掌握这些概念,掌握自然数、分数、百分数、小数的计数单位,准确说出每个数包含的计数单位的个数,会进行数的分解与组成。认识这些数之间的关系。
(2)、数的读法和写法:
①整数读写法;②小数读写法;③分数读写法。
复习的重点是:整数的多位数读写。其中中间、末尾有零的数的读写是难点。
要求:①正确读写整数、小数、分数。
②由于较大数目的读写比较抽象、枯燥,复习时要借助“分级线“加强指导,另外要创设现实的问题情境,增强趣味性。如:提供现实生活的报道数据,感受多位数与现实的联系,调动学习学习的热情,体验大数目的实际意义,增强学习和应用意识。
(3)、数的改写:
①把一个较大的多位数改写成以“万”或“亿”作单位的数。
②、求小数的近似数
③省略“万”或“亿”后面的尾数。
④假分数与整数、带分数的互相改写。
⑤分数、小数、百分数的互化(不包括循环小数化为分数)。
复习的难点是:“改写”与“省略”之间的区别
要求:①复习时侧重对比训练。如:把20098000改写成以万为单位的数是( ),省略万后面的尾数是( )。在对比训练中体验它们的联系与区别。②改写、互化时注意互化方法灵活性的训练
(4)、数的大小比较:
①整数大小比较;②小数大小比较;③分数大小比较;④百分大小比较;⑤整数、小数、百分数之间的比较。
复习难点:分数大小的比较。
要求:①掌握比较方法,会比较数的大小;
②给学生一定的时间与空间,让他们自己去探索每一类数的比较方法之间的联系、区别,培养学生自主学习的能力。
③拓展学生思维,培养个性化学习。通过复习,学生应该达到运用抽象的数进行比较的水平,但由于学生学习能力、水平不同,在比较数的大小中允许学生采取不同的比较方法。
④注重比较形式的多样化,让学生进一步认识数值的实际意义。如:在0.4与0.5之间插入一个两位小数;写出一个比1/4小的分数------
⑤整数、小数、分数、百分数之间的比较是一个难点,复习时教师应根据学生的特点,教师自身的特点采取适应的方法进行指导或学生之间相互交流自己的科学的比较方法。
(5)、数的整除:
①、整除、约数、倍数、质数、合数、质因数、分解质因数、互质数、最大公约数、最小公倍数。
②、能被2、5、3整除的数的特征。
③、分解质因数。
④、求最大公约数和最小公倍数的方法。
数的整除这部分内容概念非常多,又很抽象,应该着重弄清它们之间的联系与区别。
要求:①以理解概念,正确应用概念为主要目的。
由于这部分概念抽象,学生复习时会有一定难度,为了降低学生的难度,不要求学生死记硬背概念,能在具体的问题情境中做出准确判断即可。如:10÷2=5--------(整除)
7÷2=3.5-----(除尽)
②掌握20以内的整数的特点(质数、合数、奇数、偶数、最大的、最小的)。
③加强概念辨析,深入理解掌握概念。
在概念辨析中应加强学生的自主活动,让他们在探索中理解每个概念的真正含义。
④注重问题的开放性,建立知识之间的联系,达到“举一反三”的目的。体现不同的学生学习的不同特点。如:针对7、14、21、25、49这些数,围绕数的整除知识你能提出什么样的数学问题?36□如果在方框内填一个数字,关于数的整除知识你可能提出什么样的问题?
⑤关于最大公约数、最小公倍的问题,要加强实际应用训练(参照单元调研题)。
(6)、分数、小数的基本性质
分数小数的基本性质是分数、小数计算的基础。通过复习使学生巩固分数、小数的基本性质,并且建立起它们之间的联系。关于这部分内容教材中涉及的比较少。
复习时侧重的知识点:
①小数点位置的移动引起小数大小的变化;②约分、通分。
小数点位置移动是一个难点,复习时可根据本班学生实际情况有针对性地进行指导。
(7)、四则运算意义、法则、运算定律与简便算法、四则混合运算。
这三小节是把整数、小数、分数、四则运算放在一起进行整理和复习。分数、小数的四则运算是在整数四则运算的基础上扩展来的。它们既有联系又有区别。为了让学生更好地掌握这些运算的意义,教材中整理成表格,使学生很清楚地看出它们的联系与区别。
教学建议:①复习时这张表格应让学生完成,教师可给学生提供表格、思考的问题,让学生去解决问题,在解决问题中通过合作的方式,完成这张表格,让学业生经历这个过程,对于他们认识、了解四则运算的意义及联系是非常重要的,同时可培养他的分析、概括、总结能力,培养他们合作学习的意识。
②四则运算的法则的复习方法同四则运算的意义的复习方法是相同的,可以让学生通过计算回忆法则,体会整数、小数、分数加减法的相同点和不同点,乘除法的相同点与不同点。不需要用语言准确概括出来。混合运算不超过三步,参加运算的数不宜过大,按照《课标》要求降低计算的难度,但要加强计算的准确度,计算方法的灵活度的训练。复习四则混合运算的重点:一是运算顺序、计算方法;二是学习习惯的养成,复习时严格要求学生作到下面四点:一看有无抄错数;二看顺序是否正确;三看计算结果是否合理;四看算法是否最优化
③关于加减法、乘除法各部分之间的关系的等量关系式,要求学生熟练掌握,它是解方程的基础。
④运算定律与简便算法(除教材列表格中列出的运算定律外还应包括减法性质、商不变的规律),复习时要要把这些定律应用到整数、小数、分数的运算中。除了应用定律进行比较典型的简算外,还应进行一些简算的基本技巧性的训练。参照教科书P90-7。
教学建议:
六年级学生的思维正逐步向抽象思维过度,但他们仍需要借助形象去感受。所以复习时注意把这些数的概念放到现实有趣的具体情境中,在学生熟悉的生活中让他们去解决问题、参与活动,唤起学生对这些数的概念的回忆,使学生进一步感受数的意义,建立起数与数之间的联系。复习时要避免单纯就知识讲知识,更不要让学生死记硬背概念。要通过实践活动让学生感受、探索、理解、建立知识间的联系。如复习小数、分数、百分数之间的关系,我们可以给学生一个研究探索时间空间,让他们去发现其中的规律:
2、代数初步知识
复习要点:
(1)、用字母表示数:表示学过的计算公式;表示基本数量关系。
(2)、简易方程:①方程概念;②解方程;③列方程解文字题。
(3)、比和比例:①比和比例的意义与性质;②求比值化简比;③比例尺。
要求:这部分知识学过的时间不长,学生又经常用到,复习时不必过多讲解。可以针对本班学生的实际,通过具体题目让学生进行分析、判断、解答,有针对性地进行复习。
在这部分知识复习时,注意下列知识的区别:
①a2与2a;②X-2=3、3-X=2;③比和比例; ④比与除法、分数;⑤比的基本性质与比例基本性质; ⑥求比值与化简比; ⑦正比例与反比例。
由于这部分知识易混的概念较多,建议采用对比方法进行复习较好。不要进行纯理性概念上的对比,要通过解决具体的问题来体验、感悟它们的联系与区别,掌握解决问题的方法。如:求比值:4:2/5=10-----是一个商,可以是整数、小数、也可以是分数。
化简比:4:2/5=10:1---是一个比,前项和后项都是整数
3、应用题
(1)复习要点:
①、简单应用题:简单应用是复合应用题的基础,复习时从简单应用题开始,通过简单应用题的复习,掌握常见的数量关系,和常用的应用题的分析方法。
②、复合应用题:是复习的一个难点,复习时重点指导学生用分析法分析较为适宜。复合应用题不超过三步。
③、列方程解应用题:用比例解应用题(包括一般应用题、分数、百分数应用题、几何形体周长、面积、体积计算)复习的重点是训练学生找到等量关系或确定比例关系。复习时可用不同的形式进行训练。
(2)应用题复习的要求:
①、掌握基本的数量关系和分析方法,强化基本功训练。
②、给学生足够的时间和空间,让他们进行信息的收集与处理。把生活中的数汇编成应用题。自编自答或自编互答、互编互答,充分发挥学生的自主性,让枯燥的应用题复习课充满生机与活力。
③、把应用题复习与解决实际问题结合起来,增加应用题的开放性(条件开放、问题开放、解决策略开放),开发学生的智慧与创新能力。鼓励学生多角度考虑问题。增加思考的深刻性。
4、量的计量
复习要点:
(1) 常用的长度、面积、体积单位
(2) 常用的质量单位
(3) 时间单位
(4) 名数改写
复习的难点:建立各个单位的空间观念,理解他们之间的联系。
要求:
(1)记住计量单位比较简单,但要建立计量单位的概念却是一个难点,复习时教师要注意学生独立学习与自主学习能力的发挥,尽可能让学生联系自己生活中的一些具体实物或教具,比一比、说一说、计量单位的大小。教师还可以把教材中的表格设计成报告单,让学生以独立或合作的形式进行研究探讨,填写报告单,进行交流,加深理解这些计量单位之间的联系与区别,巩固强化学生们已建立起来的这些单位的空间观念,达到能准确应用这些单位的目的。
如:
长度单位 面积单位 体积(容积)单位 实 例
图形 图形 图形
(2)掌握计量单位名数的改写方法,进行正确的化聚。
四、复习中应注意的几个问题
1、在复习过程中,要注意从知识与能力、过程与方法、情感态度与价值观三个维度落实教材要求,全面体现《课标》精神,提高学生的数学素养。
2要把复习与评价相结合,加强形成性评价,通过学生的自我评价,学生之间的互相评价使复习的过程成为学生自我反思,主动学习,主动发展和提高的过程。
3、复习时要注意着眼于全体学生,尊重学生的个性差异,努力使每一个学生通过复习都得到提高,促进每一个学生的健康发展。
5、几何初步知识
这部分知识是把小学数学中学过的平面图形集中整理复习。复习的知识点:
(1) 平面图形知识;(2)平面图形的周长和面积;(3)立体图形的认识;(4)立体图形的表面积和体积。
(1) 平面图形知识
① 直线、射线、线段的特点、联系与区别。
② 角的特征、角的分类、角的度量方法。
③ 垂直与平行。
④ 三角形的特征,分类(按边分、按角分)。
⑤ 四边形。每类图形的特征,特殊与一般的关系。
⑥ 圆与扇形。圆的特征、直径、半径的特点,扇形与圆的关系。
⑦ 轴对称图形。(能画出学过的轴对称图形的对称轴)
要求:①掌握特征、建立联系,让学生感受到点到线,线到面、面到体的联系。
②能根据图形特征进行合理的判断、选择。
(2) 平面图形的周长和面积
①理解周长与面积概念。
②掌握每种图形的周长与面积计算公式及推导过程。
③能应用公式灵活解决问题。
①长方体、正方体、圆柱、圆锥的特征。
②长、正方体的关系。
(3) 立体图形的表面积和体积
②会求长方体、正方体、圆柱的表面积和体积;圆锥的体积。
③建立这四种立体图形体积计算的联系。
④加强体积与表面积的区别、体积与容积的区别的对比训练。
建议:几何初步知识这部分内容,知识容量比较大,复习时要让学生真正参与到学习中来,提高学习效率,教师就要设计一些具有思考性,挑战性、综合性强的问题激发学生积极思考,调动学生的积极性,充分发挥学生的主体作用,让他们在探究的过程中进一步理解、巩固所学的知识,体验成功的快乐,掌握学习的方法。
如:平面图形面积知识网络图由学生独立完成(独立思考、查阅资料、寻求帮助);长方体、正方体表面积可让学生自带磁带盒,设计包装方案------
切忌:面面俱到,不停讲解,不断提问,大量练习,只求结果,不重过程。
6、简单的统计
复习要点及要求:
(1) 平均数:理解平均数的意义;掌握求平均数的方法;能应用平均数解决实际问题。
(2) 统计表、统计图:了解统计表、图的种类,特点,制作方法,会分析统计图表。
建议:
复习时忌机械练习,单调地填表、制统计图,应结合学生的实际生活设计一些实践活动,在活动中,让学生应用统计知识,既达到了巩固知识的目的,又调动了学生的积极性,主动性,发挥了学生的实践能力与创新能力。
如:从学生的学习生活出发,针对商场购物优惠方式多种多样的特点,让学生自己设计购物方案,选择最佳购物方案,在这个过程中完成统计知识的复习任务。