实用文档>切线长定理的教案

切线长定理的教案

时间:2024-10-19 06:06:19

关于切线长定理的教案

关于切线长定理的教案

关于切线长定理的教案

  教学目的:

  1.使学生理解切线长的概念,掌握切线长定理.

  2.使学生学会运用切线长定理解有关问题.

  3.通过对例题的分析,培养学生分析/Article/Index.html>总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

  教学重点和难点:

  切线长定理是教学的重点.切线长定理的灵活运用是教学的难点.

  教学过程:

  一、复习提间:

  1.背诵切线的判定定理和性质定理.

  2.过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢?

  二、讲授新课:

  1.切线长的概念(教师强调指出:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.).

  教师先画出图形,图1,然后板书:已知P是⊙O外一点,PA、PB是⊙O的切线,A、B是切点.接着,直接告诉学生:切线PA、PB是直线,但在研究切线的一些特性时,需要用到线段PA、PB或者它们的长度(同学们在以后做题时将体会到)所以给图中的线段PA、PB的长起个名字叫做“切线长”.切线长的定义是:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.

  2.切线长定理(讲清定理的条件和结论、证明方法,并要求学生课上基本记住).

  教师 引导学生继续观察,直观判断,猜想图中PA是否等于PB.学生容易想到PA=PB.图形可能存在着什么关系(线段PA=PB),能不能证明出线段PA=PB呢?我们先从已知条件考虑:由“PA、PB是⊙O的切线,A、B是切点”可以得出什么?(连结OA、OB则∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否证出PA=PB(连结OP得△OAP≌△OBP).通过三角形全等,不但证明了PA=PB,而且证出了∠OPA=∠OPB.

【切线长定理的教案】相关文章:

动能和动能定理教案(精选11篇)07-25

一切从实际出发的复习教案03-20

多边形内角和定理证明05-17

证明勾股定理的4种方法04-03

小班音乐活动《切水果》观摩课优秀教学设计(通用5篇)10-23

《左传》教案10-24

存货教案02-28

爱莲说的经典教案03-20

《牧场上的家教案》经典教案设计03-20

茶花赋教案04-06

用户协议