实用文档>曲线与方程”教学设计说课稿

曲线与方程”教学设计说课稿

时间:2024-09-27 00:05:56

曲线与方程”教学设计说课稿

曲线与方程”教学设计说课稿

曲线与方程”教学设计说课稿

  一、教学内容与内容解析

  1.内容:“曲线与方程”是《普通高中数学课程标准》规定的教学内容:理科选修2-1的2.1.1的内容,主要包括(1)曲线的方程与方程的曲线概念;(2)求曲线的方程的一般方法(步骤);(3)坐标法的基本思想与研究的基本问题.

  2.内容解析:

  在平面直角坐标系建立以后,点坐标(有序实数对);平面曲线(点的集合或轨迹)二元方程.因此, 曲线的方程是几何曲线的一种代数表示,方程的曲线则是曲线的方程的一种几何表示。曲线和方程的这种相互表示,揭示了几何中的“形”与代数中的“数”的统一结合。曲线与方程的相互转化,丰富了研究几何问题数学方法,产生一门新数学学科---解析几何,其方法论的意义影响深远,更便于人们在数字化时代,用计算机工具研究处理几何问题。

  研究曲线与方程的目的是把曲线的几何特征转化为数量关系(方程),并通过代数运算处理已得到的数量关系,进而得出曲线的几何性质以及研究他们之间的相互关系,并达到利用曲线为人们服务的目的.因此,通过这一部分内容学习,可以加深学生对数学中的代数方法的认识,也能够让学生更好地体会数学的本质.

  “曲线和方程”是解析几何中最基本(奠基)内容,是学生体会并理解圆锥曲线与其方程的基础。不但为学习椭圆、双曲线、抛物线内容做准备,而且为学习研究其他曲线提供了理论和方法的准备.因此,教学时不仅要让学生学习如何求曲线的方程,而且要通过这一内容培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线.

  本节中的“曲线与方程”的概念,它是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的思想方法提升、深化,是研究问题“由特殊到一般,再到特殊”整个过程的一个阶段。它刻画了曲线(几何图形)和方程(代数关系)间的一一对应关系,并根据曲线与方程的对应关系,介绍了求解曲线方程的一般方法,并要求学生能通过方程来处理一些简单的几何问题,从而达到培养学生“初步通过研究方程来研究曲线的几何性质”目的。“数形结合思想”在本章中得到了充分体现,贯穿于研究圆锥曲线的全过程,

  二、教学目标与目标解析

  1.目标:

  (1)通过实例理解曲线的方程与方程的曲线的概念,能判断已经学习过的特殊的曲线与方程之间是否具有互为表示的关系;

  (2)通过实例体会求曲线的方程的基本步骤,能求出给定几何特征的曲线的方程;

  (3)通过实例体会不同的平面直角坐标系对同一曲线方程的影响,体会如何“恰当”地建立平面直角坐标系.

  (4)通过一些简单曲线的方程及其研究,体会坐标法的基本思想及简单应用.

  2.目标解析:

  教学目标(1)和(2)是本节课的教学重点,教学时落实好目标(1)、(2)和(3)是实现教学目标(4)的前提与保证.

  在学生通过函数y =f(x)及其图象、直线与方程、圆与方程的学习,对曲线的方程与方程的曲线这些概念初步认识的基础上,现在的任务是要建立曲线与方程之间的一般性的概念,让学生能从“定义”的角度去理解这些概念.

  教学目标(3)是学生初学时不易达到的目标,教学时要提供学生熟悉的曲线(比如直线,圆等)在不同坐标系中的方程的简洁程度,让学生体会建立坐标系时应该关注的要点.

  对许多与曲线有关的具体问题而言,原本是没有坐标系的.因此,通过这样的问题,可以使学生体会如何建立适当的坐标系,求出问题中曲线的方程,并通过曲线的方程帮助解决问题,以便实现教学目标(4).

  三、教学问题诊断分析

  1.如何理解曲线与其方程之间的关系?学生可以很流利地背出曲线与其方程应该满足的两条,但是如何证明“一条曲线与一个方程之间具有互为表示的关系”,这是学生学习时可能遇到的第一个教学问题. 这个问题可以结合“直线与其方程”、“圆与其方程”进行说明.

  2.在求曲线的方程时,如何建立平面直角坐标系?这是学生会遇上的第二个教学问题,也是本节课的教学难点之一.教学时,应通过实例,帮助学生总结出建立坐标系的基本要点,并用具体问题让学生练习进行体会.

  3.在将曲线上的点应该满足的几何特征转化为点的坐标应满足的等式后,常常遇上“将所得等式化简得到所求方程”的问题.对于有些复杂的等式,化简是一个学生不易把握的问题,学生在此极易出错,这是第三个教学问题.教学时不能因为这个问题而使教学偏离重点,因而宜使用信息技术工具通过对比表示验证方法解决这个问题.

  4.学生学习时,可能会因更多地关注代数运算而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引领.

  四、教学支持条件

  1.在进行本节课的教学时,学生已经在数学必修1中学习了函数y =f(x)及其图象,在数学必修2中学习了直线与方程、圆与方程,这些内容是学生理解曲线与方程概念的重要基础,因此教学时应充分利用这一教学以备条件,引导学生多进行归纳与概括.

  2.曲线与方程是数形结合的典范,教学这一内容时会涉及大量图形的绘制与方程的简化等代数运算,因此,《几何画板》是重要的支持条件,教学中应充分利用这一工具,不仅可以节省大量时间用于学生思考,而且可以对实际问题中的数据形象地进行演示分析.

  五、教学过程设计

  [问题1]请同学们阅读P34的内容,对每个实例用简练的两句话进行概括总结,(1)第一、三象限角平分线和二元方程x=y(或x-y=0)之间有什么对应关系?(2)圆和二元方程之间有什么对应关系?

  在坐标系中,

  (1) 第一、三象限角平分线上任一点的坐标都是二元方程x-y=0的解;

  (1’) 圆上任一点的坐标都是二元方程的解;

  (2) 以二元方程x-y=0的(任一)解为坐标的点都在第一、三象限角平分线上。

  (2’) 以二元方程的(任一)解为坐标的点都在圆上。

  意图:从学生熟悉的曲线与方程的特例出发,为引出曲线的方程与方程的曲线的概念做铺垫.

  师生活动:让学生尝试直线与方程、圆与方程中,“曲线上的点与二元方程(实)解之间的对应关系”的要求;教师向“一般曲线上的点与一般二元方程(实)解之间的对应关系” 的要求上进行引领,为介绍曲线的方程与方程的曲线的概念再做准备.

  [问题2] 在坐标系中,对一般的曲线与二元方程,你能给出曲线的方程和方程的曲线的概念吗?

  意图:给出曲线的方程与方程的曲线的概念.

  师生活动:让学生先概括表达,然后教师引领学生阅读教材上的“定义”,给出曲线的方程和方程的曲线的概念.最后形象化给出:

  [问题3]试谈一谈,我们对“方程f(x,y)=0是曲线的方程”、 “曲线C是方程f(x,y)=0的曲线” 的概念掌握,应把握哪些方面呢?

  意图:加深对曲线的方程与方程的曲线的概念中关键方面的理解.

【曲线与方程”教学设计说课稿】相关文章:

从算式到方程的教学设计(精选12篇)10-26

数学教学之方程教学反思03-20

《椭圆及其标准方程》的教学反思02-24

曲线跑活动教案09-27

《一元一次方程》教学设计(通用8篇)02-21

北师大版四年级下册《方程》的教学设计(精选12篇)08-08

《标牌设计》的教学设计03-14

《实际问题与方程二》的教学反思(精选10篇)11-29

旋转的教学设计02-16

《茶经》教学设计02-18

用户协议