平方差公式导学案参考
平方差公式导学案参考
关于平方差公式导学案
学习目标
或学习任务1、经历探索平方差公式的过程,能总结出平方差公式及语言叙述.
2、能正确运用平方差公式进行简单的计算.
3、培养语言表达能力、逻辑思维能力.
本课时
重点难点
或学习建议教学重点:理解平方差公式,运用平方差公式进行计算.
教学难点:平方差公式的推导.
本课时
教学资源
的使用电脑、投影仪.
学习过程学习要求
或学法指导教师
二次备课栏
自学准备与知识导学:
1、看图回答:边长为的小正方形纸片放
置在边长为的大正方形纸片上,你能求出
阴影部分的面积吗?
⑴阴影部分由2个相同的直角梯形组成,梯
形的上底等于_____,下底等于_____,高等
于_____,因此梯形的面积等于___________,
阴影部分的面积等于____________________.
⑵大正方形的面积等于_____,小正方形的面
积等于_____,因此阴影部分的面积等于____________.
⑶显然,⑴和⑵中求得的面积一样.由此可得出的结论是:
__________________=____________,这个公式称为平方差公式.
2、你还能用多项式乘多项式法则得到同样的结论吗?请写出你的过程.
(a+b)(a-b)=
3、你能说出平方差公式的特点,以及它与完全平方公式的不同点吗?
4、平方差公式的语言叙述是:_____________________________________.
5、总结:完全平方公式(2个)、平方差公式通常称为乘法公式,在计算时可以直接使用.
分别从整体和局部两个方面去思考.
梯形的面积=
(上底+下底)×高÷2.
公式的语言叙述:两数和乘两数差等于这两个数的平方差.
学习交流与问题研讨:
1、例题一(准备好,跟着老师一起做!)
用平方差公式计算:⑴⑵
2、例题二(有困难,大家一起讨论吧!)
计算:⑴⑵
分析:把⑴中的看作平方差公式中的,把看作,把⑵中的看作平方差公式中的,把看作,再用平方差公式进行计算.
与公式比较,哪个相当于公式中的,哪个相当于公式中的.
练习检测与拓展延伸:
1、巩固练习一
⑴口答下列各题
①②
③④
⑵判断正误
①()②()
③()④()
⑶填空
①
②
③
④
2、巩固练习二
⑴课本P67练一练1、2;⑵补充习题P381、2.
3、提升训练
⑴课本P67练一练3;
⑵计算:
4、当堂测试
探究与训练P45-464-9.
分析:与公式比较,哪个相当于公式中的,哪个相当于公式中的.要更好、更灵活的掌握平方差公式.
课后反思或经验总结:
1、通过适量的练习使学生能够正确熟练的运用乘法公式进行混合运算,引导学生运用公式简单计算,让学生在应用公式的过程中,提高变形应用公式的能力。
【平方差公式导学案参考】相关文章:
完全平方公式导学案07-04
乘法公式导学案模板06-19
《平方差公式》教学反思参考07-09
平方差公式二教案参考06-23
老王的导学案参考07-04
完全平方公式_数学导学案07-04
乘法与因式分解公式导学案07-03
济南的冬天导学案参考07-04
《童年的朋友》导学案参考07-03