完全平方公式导学案
完全平方公式导学案
一、学习目标
会推导完全平方公式,了解公式的几何解释,并能运用公式计算。
二、学习重点:
掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算。
三、学法指导:
1.教学方法:尝试指导法、讲练结合法、小组合作。
2.学生运用完全平方公式计算时,要注意:
(1)切勿把此公式与公式混淆,而随意写成。
(2)切勿把“乘积项”2ab中的2丢掉.
(3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。要想用好公式,关键在于辨认题目的结构特征。
四、学习过程:
【课前准备及预习感悟】
依据预习提纲预习并完成相关的问题
一、复习回顾:
1、叙述平方差公式的内容并用字母表示;
2、用简便方法计算
①103×97②103×103
3、请同学们自编一个符合平方差公式结构的计算题,并算出结果.
(学生活动:编题、解题,然后两至三个学生说出题目和结果.)
二、探究发现:
1、计算
学生活动:计算,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.
由学生概括:
两数和的平方等于这两个数的平方和加上。
2、结合图形,理解公式,与同学交流。
根据图形完成下列问题:
如图:A、B两图均为正方形,
(1)图A中正方形的面积为____________,(用代数式表示)
图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。
(2)图B中,正方形的面积为____________________,
Ⅲ的面积为______________,
Ⅰ、Ⅱ、Ⅳ的面积和为____________,
用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。
分别得出结论:
预习疑难摘要
【课堂学习研讨交流】1、小组研讨预习中碰到的疑难问题,不会的要向其他同学或老师请教哦!2、说说完全平方公式的特征,和你的伙伴交流认识。
【知识应用与能力形成】
1、引例:计算
讲解:在中,把x看成a,把2y看成b,在中把2x看成a,把-3y看成b,则、,就可用完全平方公式来计算,即
(a+b)2=a2+2ab+b2
[2x+(-3y))2=4x2+22x(-3y)+(-3y)2
(a+b)2=a2+2ab+b2
2、例1运用完全平方公式计算:
(1) 1012
解:1012=(100+1)2=1002+2ⅹ100ⅹ1+1=
3、做课本例1、例2(1)
学生活动:学生独立在练习本上尝试解题,2个学生板演.
【课内训练巩固】
教科书38页练习第1、2、3题。
例题反思:
【学习体会】
1、本节课你有何收获?把你认为重点的内容划在书上。
2、你还有哪些困惑?与同学和老师交流,解决它!
3、你能否根据完全平方公式的结构特征自编口诀来帮助记忆?
【基础与达标】
1、教科书40页习题2.2A组第1题
2、教科书40页习题2.2A组第3题
五、综合与提升(必做作业)
1.下列各式中,能够成立的等式是().
A、 B、
C、D、
2.若是一个完全平方式,则m的值是___________
A、12B、﹣12C、±12D、±6
3、运用完全平方公式计算:
(1)(m-n)(3)
⑶1999(4)(a-3b)(3b-a)
六、拓展与探究(选做作业)
教科书40页习题2.2B组2、3题
【完全平方公式导学案】相关文章:
平方差公式导学案参考03-19
《故乡》的导学案02-14
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27
往事依依的导学案08-27