数的整除教案设计
数的整除教案设计
教学目标
1、使学生理解自然数与整数的意义。
2、使学生掌握整除、约数与倍数的概念。
3、培养学生抽象概括与观察物的能力。
教学过程
一、建议自然数与整数的概念
1、谈话引入:今天这节课,我们学习数的整除。(板书课题)
2、教师提问:既然是数的整除,自然就与数有关,同学们都学过什么数?
(教师板书:整数、小数、分数)
同学们会数数吧?(学生数数)
(教师板书:1、2、3、4、5、)
继续数下去,能数到头吗?
数不到头,我们可以用一个什么标点符号来表示呢?
(教师板书:“……”)
3、教师小结:
用来表示物体个数的1、2、3、4、5等等,叫做自然数。(板书:自然数)
提问:最小的自然数是几?有最大的自然数吗?
当一个物体也没有时,我们用几来表示?(板书:0)
二、建立整除的概念
1、教师明确:数的整除,不仅与数有关,还与除有关,一说到除,在家就会想到两个数相除,那么整除又是什么意思呢?整除也是两个数相除,但是在小学阶段,我们研究整除不包括“0”。
2、出示卡片 1.2÷4
提问:在数的整除中研究这样的两个数相除吗?为什么?
3、再出示卡片:10÷20,16÷5,15÷3,36÷9,24÷2
提问:这几个式子中的被除数和除数都是什么数?
教师明确:被除数和除数都是自然数,这是我们研究数的整除的一个非常重要的条件。
4、教师说明:被除数和除数都是自然数,如:10÷20,我们能不能说10能被20整除呢?还不能,还要看它的商。
组织学生口算出5张卡片的商。(其中16÷5指定回答“商几余几”)
提问:被除数和除数都是自然数,商可能有哪几种情况?
排除没有整除关系的卡片,指15÷3=5一类的卡片,说明:只有这样的,我们才能说15能被3整除。
5、学生举例
6、提问:用字母a表示这样的被除数,用b表示这样的除数,商怎么样,我们就说a能被b整除呢?
这样看来,整除除了被除数和除数都是自然数外,还得有一个什么条件?
教师明确:商是自然数,没有余数是整除的又一个重要的条件。
7、出示卡片(区别整除和除尽)
4÷3=1.3 18÷18=1 7÷5=1.4
4÷0.2=20 42÷6=7
三、建立约数与倍数的概念
1、教师说明:当数a能被数b整除时,a就是b的倍数;b就是a的约数。
2、联想训练:教师说一句由学生说出另外两句。
如:教师:15能被3整除(生:15是3的倍数,3是15的约数)
教师:36是9的倍数(生:36能被9整除,9是36的约)
教师:2是24的约数 (生:24能被2整除, 24是2的倍数)
教师:7不能被4整除(生:7不是4的倍数,4又不是7的约数)
3、区分“倍数”与“几倍”
教师提问:能说4是0.2的倍数吗?为什么?
4、判断
12是3的倍数 ( ) 7是21的约数 ( )
1是25的约数 ( ) 3.6是3的倍数 ( )
4是约数 ( ) (说明:通过此题,深化倍数、约数相互依存的关系)
四、巩固练习
思考题:1,3,6,9,12这几个数中谁与谁之间有约数和倍数的关系?
五、课堂小结
1、数的整除是在自然数范围内讨论的。
2、两个数之间,一旦具备整除关系,那么这两个数之间必定还具有约数、倍数的关系。所以,整除是前提,倍数、约数是在这个前提下必然产生的一种结果。
六、布置作业
1、下面的说法对吗?说出理由。
(1)因为36÷9=4,所以36是倍数,9是约数。
(2)57是3的倍数。
(3)1是1、2、3、4、5,……的约数。
2、一个数是42的约数,同时又是3的倍数。这个数可以是多少?
七、板书设计
数的整除
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)
如果数a能被数b(b≠0)整除,a就叫做b的倍数, b就叫做a的约数(或因数)。
探究活动
把数分类
活动目的
1、使学生掌握奇数、偶数、约数、倍数的交叉关系和区别。
2、帮助学生建立完整的知识结构。
活动题目
桌上有20张卡片,在这些卡片上分别写着1,2,3,…19,20这20个数。请将这20个数加以分类。
活动过程
1、学生以小组为单位讨论。
2、汇报讨论结果。
3、交流收获。
【数的整除教案设计】相关文章:
“数的整除整理复习”教学设计03-19
二年级数学数的整除的意义复习04-25
有理数及其运算复习的教案设计03-19
《一位数除两位数商是两位数》教案设计(精选10篇)03-15
让心飞翔教案设计01-24
教案设计:破釜沉舟07-19
《天窗》优秀教案设计06-08
《杨氏之子》教案设计02-11
认识南瓜教案设计02-11
白帆音乐教案设计01-25