实用文档>3.4.2余角和补角的教案

3.4.2余角和补角的教案

时间:2024-07-11 20:54:17

关于3.4.2余角和补角的教案

关于3.4.2余角和补角的教案

关于3.4.2余角和补角的教案

  以下是为您推荐的3.4.2余角和补角教案,希望本篇文章对您学习有所帮助。

  3.4.2余角和补角

  一、课题:3.4.2余角和补角

  二、学习目标:

  ㈠知识与技能:

  1.在具体情境中了解余角和补角,懂得等角或同角的补角相等、等角或同角的余角相等;

  2.并能运用这些性质解决一些简单的实际问题。

  ㈡过程与方法:

  经历观察、推理、交流等活动,发展学生的图形观念,培养学生的推理能力和有条理的表达能力。

  ㈢情感态度与价值观:

  1.体验数学知识来源于生活,又能运用于生活,解决生活中的一些实际问题;

  2.使学生体会几何图形的动态美,通过性质的推导,使学生初步领略几何逻辑推理的严密美.

  三、教学重难点:

  重点:互为余角、互为补角的概念及有关余角、补角的性质;

  难点:有关余角和有关补角性质的推导和运用。

  四、教学方法:演示法、观察法、小组合作与交流讨论法。

  五、课时与课型:

  课时:第一课时;课型:新授课。

  六、教学准备:两副三角板、投影片若干张。

  七、教学设计:

  ㈠提出问题----从生活走向数学

  ㈡引入新课

  要想正确解决这个问题,需要学习本节课的知识.

  (板书课题)3.4.2余角和补角

  ㈢探究新知

  1.互为余角、互为补角的定义

  ⑴教师用三角板演示两个角的和是90°及两个角的和是180°的情况;

  ⑵请你自己画出两个角的和是90°及两个角的和是180°的图形。

  2.提出问题,理解定义.(投影显示)

  (1)以上定义中的“互为”是什么意思?

  (2)若,那么互为补角吗?

  (3)互为余角、互为补角的两个角是否一定有公共顶点?

【3.4.2余角和补角的教案】相关文章:

《电和磁》的教案03-04

《开花和结果》教案02-02

教案:多边形内角和与外角和05-25

关于《点和线》的教案03-20

小蚂蚁和蒲公英教案04-19

《伯牙绝弦》教案和反思03-19

精彩极了和糟糕透了的教案03-20

爷爷和小树教案(通用15篇)11-24

藻类、苔藓和蕨类植物的教案12-15

教师怎样备课和编写教案03-15

用户协议