实用文档>一元一次方程去分母教案

一元一次方程去分母教案

时间:2023-11-17 11:01:17

一元一次方程去分母教案(通用10篇)

  作为一名无私奉献的老师,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编帮大家整理的一元一次方程去分母教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

一元一次方程去分母教案(通用10篇)

  一元一次方程去分母教案 1

  教学目标:

  1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

  2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

  3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

  教学重难点:

  重点:解一元一次方程的基本步骤和方法。

  难点:含有分母的一元一次方程的解题方法。

  教学过程:

  一、新课导入:

  请同学们和老师一起解方程:

  并回答:解一元一次方程的一般步骤和最终的目的是什么?

  二、讲授新课

  请给同学们介绍纸草书(P95)。

  问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

  数是多少?

  并引入让同学运用设未知数的方法,列出相应的方程。

  并回答:这个方程和我们以前学习的方程有什么不同?

  同学们和老师一起完成解上述方程,并引入去分母。

  活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

  看一看你会不会错:

  (1)解方程:

  (2)解方程:

  典型例题:解方程:

  想一想:去分母时要注意什么问题?

  (1)方程两边每一项都要乘以各分母的最小公倍数

  (2)去分母后如分子中含有两项,应将该分子添上括号

  选一选:

  练一练:当m为何值时,整式和的值相等?

  议一议:如何解方程:

  注意区别:

  1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

  2、而去分母则是根据等式性质2,对方程的`左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

  课堂小结:

  (1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

  有没有疑问:不是最小公倍数行不行?

  (2)去分母的依据是什么?

  等式性质2

  (3)去分母的注意点是什么?

  1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

  2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

  (4)解一元一次方程的一般步骤:

  布置作业:P98,习题3.3第3题

  补充作业:解方程:

  (1)

  (2)

  板书设计:

  教学反思:

  一元一次方程去分母教案 2

  教学目标:

  1.使学生进一步掌握解一元一次方程的移项规律。

  2.掌握带有括号的一元一次方程的解法;

  3.培养学生观察、分析、转化的能力,同时提高他们的运算能力.

  教学重点:

  带有括号的'一元一次方程的解法.

  教学难点:

  解一元一次方程的移项规律.

  教学手段:

  引导——活动——讨论

  教学方法:

  启发式教学

  教学过程

  (一)、情境创设:

  知识复习

  (二)引导探究:带括号的方程的解法。

  例1.2(x-2)-3(4x-1)=9(1-x).

  解:(怎样才能将所给方程转化为例1所示方程的形式呢?请学生回答)

  去括号,得:

  移项,得:

  合并同类项,得:

  系数化1,得:

  遇有带括号的一元一次方程的解法步骤:

  (三)练习:(A)组

  1.下列方程的解法对不对?若不对怎样改正?

  解方程2(x+3)-5(1-x)=3(x-1)

  解:2x+3-5-5x=3x-1,

  2x-5x-3x=3+5-3,

  -6x=-1,

  2.解方程:

  (1)10y+7=12-5-3y;(2)2.4x-9.8=1.4x-9.

  3.解方程:

  (1)3(y+4)12;(2)2-(1-z)=-2;

  (B)组

  (1)2(3y-4)+7(4-y)=4y;(2)4x-3(20-x)=6x-7(9-x);

  (3)3(2y+1)=2(1+y)+3(y+3)(4)8x+4=2(4x+3)-2(-3+x)

  (四)教学小结

  本节课都教学哪些内容?

  哪些思想方法?

  应注意什么?

  一元一次方程去分母教案 3

  教学目标

  (一)知识认知要求

  1、认识一元一次方程与一次函数问题的转化关系;

  2、学会用图象法求解方程;

  3、进一步理解数形结合思想;

  (二)能力训练要求

  1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

  2、训练大家能利用数学知识去解决实际问题的能力。

  (三)情感与价值观要求

  体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

  教学重点与难点

  1、理解一元一次不方程与一次函数的转化及本质联系。

  2、掌握用图象求解方程的方法。

  教学过程

  一、提出问题

  (1)方程2x+20=0;

  (2)函数y=2x+20

  观察思考:二者之间有什么联系?

  从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量x的值

  从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的.解

  根据上述问题,教师启发学生思考:

  根据学生回答,教师总结:

  由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

  二、典型例题:

  例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

  一元一次方程去分母教案 4

  数学思考:

  1、学习分析问题找到相等关系并通过列方程解决问题的方法;

  2、通过学习移项解一元一次方程,体会到式子变形的转化作用。

  解决问题:

  体会解方程中的化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。

  情感态度:

  通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。

  教学重点:

  1、找相等关系列一元一次方程;

  2、用移项、合并等解一元一次方程。

  教学难点:

  找相等关系列方程,正确地移项解一元一次方程。

  教学过程:

  [活动1]展示问题、创设情境

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

  (学生自主分析后,教师提问:)

  1、本题怎样设未知数?

  2、这批书的总数有几种表示法?它们之间有什么关系?

  3、本题哪个相等关系可以作为列方程的依据呢?

  (师生共同列出方程。)

  解:设有x名学生,则可列方程得:

  3x+20=4x—25

  [活动2]学习“移项”解方程

  提问:如何解方程3x+20=4x—25呢?

  (学生分组讨论:①解方程的目标是什么?②利用什么知识可以实现这种转化?)

  引导学生分析方程的.变化:

  3x+20=4x—25

  3x—4x=—25—20

  观察:上面方程的变形有些什么变化?

  归纳:像这样把等式一边的某项变号后移到另一边叫做移项。

  [活动3]总结

  解这个方程的具体过程:

  3x+20=4x—25

  一元一次方程去分母教案 5

  教学目的

  1、使学生巩固等式与方程的概念。

  2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。

  教学分析

  重点:熟练掌握一元一次方程的解法。

  难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。

  突破:多练习,多比较,多思考。

  教学过程

  一、复习

  1、什么是一元一次方程?一元一次方程的标准形式是什么?它的解是什么?

  2、等式的性质是什么?(要求说出应注意的两点)

  3、解一元一次方程的基本步骤是什么?

  以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。

  二、新授

  1、已知方程(n+1)x|n|=1是关于x的.一元一次方程,求n的值。

  分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。

  解:略

  2、下列说法中,正确的是( )。

  A -3x=0的解是x=-3

  B -x+1=4的解为x=-

  C-1=的解是x=1

  D x2-x-2=0的解是x=2, x=-1(D正确)

  3、x等于什么数时,代数式x+5的值比的值小2。

  解:(解略,应根据题目的意思列出方程。)

  4、根据下列条件列出方程,并求出方程的解。

  (1) 某数x的3倍减去9,等于某数的3分之1加上6;

  (2) 已知-3m3(x-2)n与25m2+xn是同类项,求x的值;

  (3) 已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。

  5根据下列方程的特点解方程。

  (题目见课本中P208、16的2,4)

  三、练习

  P209习题:20。

  四、小结

  1、略。

  五、作业

  1、P240 A:1,2,3,4。

  2、B:1,2。

  一元一次方程去分母教案 6

  课题:

  一元一次方程的解法(去分母)

  课时:

  第四课时

  教学内容:

  P197-198.例5、例6

  教学目的:

  掌握去分母的方法,解含有分母的一元一次方程

  教学重点:

  去分母的方法及其根据

  教学难点及其解决方法:

  1.去分母时,正确解决方程中不含分母的项。

  解决方法:注意分析去分母的根据,并在练习时加以强调。

  2.正确理解分数线的作用。

  解决方法:演示约分过程,使学生理解分数线除了代替除号外,还起到括号作用,所以去分母时,注意把分子作为一个整体,加上括号。

  教法:启发式,讲练结合。

  教学过程:

  复习巩固上几节所学的一元一次方程解法

  解方程:(学生练)5y-1=14①

  解:移项,得5y=14+1

  同并同类项,得5y=15

  系数化为1,得y=3

  (口算检验)

  二、新课教授

  1.引入有分母的一元一次方程(根据等式基本性质2,将方程①两边都除以6,仍得等式)(即例5)

  思考:

  (1)此方程如何求解?

  若把方程左边看成(5y-1),再利用去括号求解可以吗?是否还有其它更好的方法?

  (2)能否把它还原为原来的方程①?

  若能这样,就能避免在计算过程中出现通分过程。

  (3)如何还原呢?(方程两边都乘以6)

  (4)此过程的根据是什么?(等式基本性质2)

  (5)其目的`是什么?(消去分母,故此步骤称“去分母”)

  解题过程:解:去分母,得5y-1=14(板书演示约分过程)

  (以下步骤,略)

  2.小结:去分母的基本方法:两边乘以各分母的最小公倍数。

  其根据是什么?若乘以其它数能否达到“去分母”的目的?为什么要乘以最小公倍数?

  3.练习:《掌握代数》P87.2(1)

  一元一次方程去分母教案 7

  学习目标

  1. 了解一元一次方程及其相关概念

  2. 掌握等式的性质,理解掌握移项法则

  3. 会用等式的性质解一元一 次昂成(数字系数),掌握解一元一次方程的基本方法

  4. 能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方 程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力

  5. 初步学会用方程的思想思考问 题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结 现实情境中的实际问题。

  重点

  难点 重点:解方程、用方程解决 实际问题

  难点:用方程解决 实际问题

  教学流程

  师生活动 时间 复备标注

  一、结合课本112页知识结构图和回顾与思 考中的问题,复习本章的知识点,形成框架,巩固重点知识

  二、典 例回顾

  1.一元一次方程的概念:

  例1.试判断下列方程是否为一元一次方程.

  (1).x=5 (2). x2+3x=2 (3) .2x+3y=5

  2.一元一次方程的.解(根 ):

  判断下列x值是否为方程 3x-5=6x+4 的解.

  (1).x =3 (2)x=3

  3.解一 元一次方程的基本 思路 :

  4.解决问题的基本步骤

  例5:整理一批 图书,由一个人做要40小 时。现在计划由一部分人先做4小 时,再增加2人和他们一起做8小时,完成这项工作。假设这些人 的工作效率下共同, 具体 应先安排多少人工作?

  解:设先安排x人工作4小时。根据两段 工作量之和应是总工作量,由此,列方程:

  去分母,得 4x+8(x+2) =40

  去括号,得 4x+8x+16=40

  移项及合并,得12x=24

  系数化为1, 得x=2

  答:应先安排2名工人工作4小 时.

  注意:工作量=人均效率人数时间

  本题的关键是 要人均效率与人数和时 间之间的数量关系.

  三、基础训练:课本第113页第1.2.3题.

  四 、综合训练:课本113页至114页4.5.6.7.8

  五、达标训练:3.7

  五、课堂小结: 收获了哪些?还有哪些需要再学习?

  学生作业

  课件出示 问题明确 知识要点

  学生练习基础上,教师点拨

  一元一次方程去分母教案 8

  一、教学目标:

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义,数学教案-一元一次方程。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  如果 | 40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程( )

  A、 B、 C、 D、 00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的`长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:( )

  A、 +25=310 B、 +( +25)=310 C、2 [ +( +25)]=310 D、[ +( +25)] 2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

  解:设每个练习本要 元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、 B、 C、 D、

  (2)下列方程中,属于一元一次方程的是( )

  A、 B、 C、 D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了 场,则平了 场,依题意可列得方程:

  解得 =

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数 比它的一半大2”可列得方程为

  (5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为

  四、课外作业

  P151习题5.1

  一元一次方程去分母教案 9

  一、目标:

  知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

  过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

  情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

  二、重难点:

  重点:学会解一元一次方程

  难点:移项

  三、学情分析:

  知识背景:学生已学过用等式的性质来解一元一次方程。

  能力背景:能比较熟练地用等式的`性质来解一元一次方程。

  预测目标:能熟练地用移项的方法来解一元一次方 程。

  四、教学过程:

  (一)创设情景

  一头半岁蓝鲸的体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

  (二)实践探索,揭示新知

  1.例2.解方程: 看谁算得又快:

  解:方程的两边同时加上 得 解: 6x ? 2=10

  移项得 6x =10+2

  即 合并同类项得

  化系数为1得

  大家看一下有什么规律可寻?可以讨论

  2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。

  看谁做得又快又准确!千万不要忘记移项要变号。

  3.解方程:3x+3 =12,

  4.例3解方程: 例4解方程 :

  2x=5x-21 x- 3=4-

  5.观察并思考:

  ①移项有什么特点?

  ②移项后的化简包括哪些

  (三)尝试应用 ,反馈矫正

  1.下列解方程对吗?

  (1)3x+5=4 7=x-5

  解: 3x+ 5 =4 解:7=x-5

  移项得: 3x =4+5 移项得:-x= 5+7

  合并同类项得 3x =9 合并同类项得 -x= 12

  化系数为1得 x =3 化系数为1得 x = -12

  2解方程

  (1). 10x+1=9 (2) 2—3x =4-2x;

  (四)归纳小结

  1.今天学习了什么?有什么新的简便的写法?

  2.要注意什么?

  3. 解方程的 一般步骤是什么?

  4.. (1) 移项实际上 是对方程两边进行 , 使用的是

  (2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

  (3)移项的作用是什么?

  (五)作业

  1.课堂作业:课本习题4.2第二题

  2.家作:评价手册4.2第二课时

  一元一次方程去分母教案 10

  教学目的:

  理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

  重点、难点

  1、 重点:弄清应用题题意列出方程。

  2、 难点:弄清应用题题意列出方程。

  教学过程

  一、复习

  1、 什么叫一元一次方程?

  2、 解一元一次方程的理论根据是什么?

  二、新授。

  例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?

  先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的.等量关系,建立方程,转化为数学问题。

  分析:设应从A盘内拿出盐x,可列表帮助分析。

  等量关系;A盘现有盐=B盘现有盐

  完成后,可让学生反思,检验所求出的解是否合理。

  (盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

  培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

  例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  引导学生弄清题意,疏理已知量和未知量:

  1、题目中有哪些已知量?

  (1)参加搬砖的初一同学和其他年级同学共65名。

  (2)初一同学每人搬6块,其他年级同学每人搬8块。

  (3)初一和其他年级同学一共搬了400块。

  2、求什么?

  初一同学有多少人参加搬砖?

  3、等量关系是什么?

  初一同学搬砖的块数十其他年级同学的搬砖数=400

  如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

  6x+8(65-x)=400

  也可以按照教科书上的列表法分析

  三、巩固练习

  教科书第12页练习1、2、3

  第l题:可引导学生画线图分析

  等量关系是:AC十CB=400

  若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再由等量关系就可列出方程:

  6(65-x)+8x=400

  四、小结

  本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

【一元一次方程去分母教案】相关文章:

《同分母分数加、减法》教案05-19

同分母分数加减法的教案06-02

分母教学反思06-05

旅行去教案04-17

旅行去教案04-17

旅行去教案04-17

旅行去教案04-17

旅行去教案04-17

旅行去教案04-17

用户协议