实用文档>平行线的性质教案设计

平行线的性质教案设计

时间:2024-04-25 13:35:02

平行线的性质教案设计(通用8篇)

  作为一名教职工,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编精心整理的平行线的性质教案设计,欢迎阅读,希望大家能够喜欢。

平行线的性质教案设计(通用8篇)

  平行线的性质教案设计 1

  一、目标分析

  1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

  2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

  3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

  二、教学重点、难点

  重点:平行线的三个性质及运用。

  难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

  三、教学过程

  1、创设情境引入

  (1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

  【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

  (2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

  【设计意图】:通过复习回忆平行线的判定来引入新课的`目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。

  2、探索新知

  (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

  【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

  (2)讲解平行线的性质一。

  【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

  (3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

  【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

  (4)总结平行线的性质

  性质1:两直线平行,同位角相等。

  性质2:两直线平行,内错角相等。

  性质3:两直线平行,同旁内角互补。

  (5)平行线的性质和平行线的判定区别:要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

  3、知识运用

  (1)解决引入时提出的问题

  (2)利用所学的知识讲解例4和例5

  (3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。

  (4)练习P174—175第1、2、3、4题

  【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

  4、回顾总结

  (1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

  (2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

  【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

  5、作业设计P175第5题

  【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

  四、说板书设计平行线的性质

  1.平行线的性质:

  性质1:

  例题:

  练习:

  性质2:

  性质3:

  2.平行线的性质与判定的区别

  【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

  五、自我评价

  本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强

  平行线的性质教案设计 2

  教学目标

  (1)知识与技能:

  探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

  (2)过程与方法:

  在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

  (3)情感态度、价值观:

  在课堂练习中,体验几何与实际生活的密切联系。

  教学重点:平行线的性质。

  教学难点:平行线的性质定理与判定定理的区别。

  教学模式:发现教学模式。

  教学方法:直观教学法、发现教学法、主体互动法。

  教学手段:计算机辅助教学。

  教学过程

  教学环节教师活动

  学生活动教学意图复习提问

  复习提问:判定两直线平行的方法有哪些?怎样用符号语言表述?

  思考、回答

  了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

  进

  【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

  随后同桌同学交换,再次测量、填表。

  关注:对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。

  画图、测量、填表

  思考、动手尝试,方法可能多种多样

  激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。

  给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。

  【提问】能否将我们发现的结论给予较为准确的文字表述?

  总结、表述

  锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。

  【大屏幕】平行线的性质:

  定理1.两条平行线被第三条直线所截,同位角相等。简言之:两直线平行,同位角相等。

  定理2.两条平行线被第三条直线所截,内错角相等。简言之:两直线平行,内错角相等。

  定理3.两条平行线被第三条直线所截,同旁内角互补。简言之:两直线平行,同旁内角互补。

  【提问】讨论这些性质定理与前面所学的判定定理有什么不同?

  理解、记忆

  思考、讨论、回答

  进行文字语言的规范。

  避免出现概念的混淆,渗透“命题”与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

  【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

  【大屏幕】符号语言:(不唯一)

  性质定理1.∵l1∥l2∴∠1=∠5(两直线平行,同位角相等)

  性质定理1.∵l1∥l2∴∠3=∠5(两直线平行,内错角相等)

  性质定理1.∵l1∥l2

  ∴∠3+∠6=180o(两直线平行,同旁内角互补)

  思考、一位同学板书。

  观察、理解

  为今后进一步学习推理打基础,并进行符号语言的规范。

  【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

  鼓励学生使用符号语言表述推导过程。

  【大屏幕】规范定理的推导过程。

  思考、尝试回答

  培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

  例

  范【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?

  思考、尝试运用符号语言进行推理。

  要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

  趣【大屏幕】(见附录2)

  思考、讨论、解释结论,寓教于乐,进一步让学生感受“认识来源于实践”。

  巩【大屏幕】巩固练习(见附录3)

  积极思考、展开讨论、踊跃回答,循序渐进提高难度、提高灵活运用定理的`能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

  拓【大屏幕】探究题(见附录4)

  【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

  猜测、讨论,寻找规律

  使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

  课堂小结【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

  回顾、归纳将本节课知识进行回顾。

  布置作业【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12

  课后完成

  课后能进一步巩固,鼓励学生去发现身边的数学问题。

  附录1:

  如图,请选取条格纸上的任意两条直线l1、l2,画一条直线l3与这两条平行线相交,标出这些角。

  各对同位角、内错角、同旁内角的度数之间有什么关系?大胆的去猜想,试着说一说!

  附录2:

  趣味练习:一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是

  A、先右转80o,再左转100o

  B、先左转80o,再右转80o

  C、先左转80o,再左转100o

  D、先右转80o,再右转80o

  附录3:巩固练习:

  1、如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?

  2、请在括号中填写理由:

  ①∵∠B=∠3∴AB∥CE()

  ②∵AB∥CE∴∠A=∠2()

  ③∵AB∥CE∴∠B+∠BCE=180o()

  ④∵∠A=∠2∴AB∥CE()

  3、如图,填空:

  ①∵ED∥AC(已知)

  ∴∠1=∠C()

  ②∵DF∥

  (已知)

  ∴∠2=∠BED()

  ③∵AB∥DF(已知)

  ∴∠3=∠()

  ④∵AC∥ED(已知)

  ∴∠=∠

  (两直线平行,内错角相等)

  4、请结合图形,根据所给定的平行线填入所需的角,并说明理由。(能否找出所有的情况)

  ①∵AB∥CD

  ∴∠()=∠()

  ②∵AD∥BC

  ∴∠()=∠()

  ③∵AE∥CF

  ∴∠()=∠()

  附录4:探究题:

  如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。

  当已知条件不变,而图形变为如图乙时,结论改变了吗?图丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁图所示,∠1+∠2+∠3+…+∠n的和又为多少度?你找到了什么规律吗?

  平行线的性质教案设计 3

  【教学目标】

  ◆知识目标:理解掌握平行线的性质并能应用

  ◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

  ◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

  【教学重点、难点】

  ◆重点:平行线的性质是重点

  ◆难点:例4是难点

  【教学过程】

  一、知识回顾:

  1、平行线的判定

  2、平行线的`性质

  二、合作学习:

  如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:

  (1)图中有哪几对角相等?

  (2)∠3与∠1有什么关系?∠4与∠2有什么关系?

  1、你发现平行线还有哪些性质?

  平行线的性质:

  CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  2、做一做:

  如图,AB,CD被EF所截,AB∥CD(填空)

  若∠1=120°,则∠2=∠3=-∠1=

  3、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。

  思考下列几个问题:

  (1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?

  (2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?

  (3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)

  ∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)

  ∴∠2+∠BAD=180°(两直线平行,同旁内角互补)

  E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)

  讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?

  4、练一练:(P、14课内练习1、2)

  5、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

  ∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:

  (1)AB与CD平行吗?为什么?

  (2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?

  (3)∠CBD与∠ABD相等吗?为什么?

  解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)

  ∴AB∥CD(同旁内角互补,两直线平行)

  ∴∠D=∠ABD(两直线平行,内错角相等)

  ∵BD平分∠ABC(已知)

  ∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)

  6、练一练:

  如图,已知∠1=∠2,∠3=65°,求∠4的度数。

  三、拓展

  12a34bD图1-15Ccd

  1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由

  2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C

  ABA图1 B FECD

  四、知识整理:

  1、平行线的性质:

  两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等

  3、要注意一题多解

  五、布置作业

  P15作业题及作业本

  平行线的性质教案设计 4

  一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。

  试验1:教师以窗格为例,已知窗户的`横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?

  试验2:学生试验(发印制好的平行线纸单)。

  (1)要求学生任意画一条直线c与直线a、b相交;

  (2)选一对同位角来度量,看看这对同位角是否相等。

  学生归纳:两条平行线被第三条直线所截,同位角相等。

  二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。

  活动1

  问题讨论:

  我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。

  教师活动设计:引导学生讨论并回答。

  学生口答,教师板书,并要求学生学习推理的书写格式。

  活动2

  总结平行线的性质。

  性质2:两条平行线被第三条直线所截,内错角相等。

  简单说成:两直线平行,内错角相等。

  性质3:两条平行直线被第三条直线所截,同旁内角互补。

  简单说成:两直线平行,同旁内角互补。

  平行线的性质教案设计 5

  一、主题分析与设计

  本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  二、教学目标

  1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

  3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  三、教学重、难点

  1、重点:对平行线性质的掌握与应用

  2、难点:对平行线性质1的探究

  四、教学用具

  1、教具:多媒体平台及多媒体课件

  2、学具:三角尺、量角器、剪刀

  五、教学过程

  (一)创设情境,设疑激思

  1、播放一组幻灯片。

  内容:

  ①供火车行驶的铁轨上;

  ②游泳池中的泳道隔栏;

  ③横格纸中的线。

  2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  3、学生活动:针对问题,学生思考后回答

  ①同位角相等两直线平行;

  ②内错角相等两直线平行;

  ③同旁内角互补两直线平行;

  4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)

  (二)数形结合,探究性质

  1、画图探究,归纳猜想

  教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,把结果填入下表:

  教师提出研究性问题二:

  将画出图中的同位角任先一组剪下后叠合。

  学生活动一:画图————度量————填表————猜想

  学生活动二:画图————剪图————叠合

  让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

  3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  (三)引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

  学生活动:独立探究————小组讨论————成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a ∥ b(已知)

  所以∠ 1= ∠ 2(两直线平行,同位角相等)

  又∠ 1= ∠ 3(对顶角相等)

  ∠ 1+ ∠ 4=180°(邻补角的定义)

  所以∠ 2= ∠ 3(等量代换)

  ∠ 2+ ∠ 4=180°(等量代换)

  教师展示:

  平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1、(抢答)课本P13练一练1、2及习题7.2 1.5

  2、(讨论解答)课本P13习题7。22.3.4

  (五)课堂总结:这节课你有哪些收获?

  1、学生总结:平行线的性质1、2、3

  2、教师补充总结:

  ⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

  ⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

  ⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

  ⑷用逻辑推理的'形式来论证问题。(如我们前面对性质2和3的说理过程)

  (六)作业

  学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

  六、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

  ②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

  ③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

  平行线的性质教案设计 6

  【知识要点】

  1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形

  这三条线段叫做这个三角形的边;(AB、BC、CA)

  相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)

  相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)

  三角形的内角的邻补角叫做这个三角形的外角

  2.三角形的表示为△ABC

  3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫

  做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;

  三条内角平分线交于一点,这个点叫做三角形的内心)

  4.三角形内角和定理以及相关的结论

  (1)三角形的内角和为180°

  (2)直角三角形的两个锐角互余

  (3)三角形的外角和为360°

  (4)三角形的一个外角等于与它不相邻的两个内角的和

  (5)三角形的一个外角大于与它不相邻的`任何一个内角

  5.三角形的三边关系定理

  三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边

  6.三角形具有稳定性

  7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫

  做多边形

  这些线段叫做这个多边形的边;

  相邻两条边的公共端点叫做这个多边形的顶点;

  相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角

  多边形的内角的邻补角叫做这个多边形的外角

  8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线

  由一个顶点出发的对角线有( n -3)条;( n 表示边数)

  多边形共有条对角线( n 表示边数)

  9.多边形的内角和及外角和

  (1)多边形的内角和为(n-2)180°( n 表示边数)

  (2)多边形的外角和为360°

  阶段练习

  一、回答下列各问题

  1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?

  2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?

  3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?

  为什么?

  4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画

  出来

  5.△ABC中有几条角平分线?试画图说明

  6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?

  试画图说明

  7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?

  8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?

  9.三角形的一个外角与它不相邻的两个内角之间有什么关系?

  二、填空题

  1.三角形的外角和是内角和的()倍

  2.四边形的外角和是内角和的()倍

  3.六边形的外角和是内角和的()倍

  4.一个多边形的内角和是900°,则这个多边形是()边形

  三、解答题

  已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA

  平行线的性质教案设计 7

  教学目标:

  1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

  2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

  重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

  难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  教学过程

  一、引导学生逆向思维

  现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的`三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

  二、实践探究

  1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3—1)。

  2、学生测量这些角的度数,把结果填入表内。

  角∠1∠2∠3∠4∠5∠6∠7∠8

  度数

  3、学生根据测量所得数据作出猜想。

  (1)图中哪些角是同位角?它们具有怎样的数量关系?

  (2)图中哪些角是内错角?它们具有怎样的数量关系?

  (3)图中哪些角是同旁内角?它们具有怎样的数量关系?

  4、学生验证猜测。

  学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

  5、师生归纳平行线的性质,教师板书。

  平行线具有性质:

  性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。

  性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。

  性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。

  教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。

  平行线的性质平行线的判定

  因为a∥b,因为∠1=∠2,所以∠1=∠2所以a∥b。

  因为a∥b,因为∠2=∠3,所以∠2=∠3,所以a∥b。

  因为a∥b,因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b。

  6、教师引导学生理清平行线的性质与平行线判定的区别。

  学生交流后,师生归纳:两者的条件和结论正好相反:

  由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。

  由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。

  7、进一步研究平行线三条性质之间的关系。

  教师:大家能根据性质1,推出性质2成立的道理吗?

  结合上图,教师启发分析:

  考察性质1、性质2的结论发生了什么变化?

  学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。

  因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

  又∠3=∠1(对顶角相等),所以∠2=∠3。

  教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。

  学生仿照以下说理,说出如何根据性质1得到性质3的道理。

  8、平行线性质应用。

  讲解课本P23例题

  三、巩固练习

  课本练习(P22)。

  四、作业:课本P22.1,2,3,4,6。

  平行线的性质教案设计 8

  教学目标:

  1. 知识与技能: 学生能准确理解并掌握平行线的性质,包括“两直线平行,同位角相等;内错角相等;同旁内角互补”。

  2. 过程与方法: 通过观察、推理、证明等数学活动,培养学生逻辑思维能力和空间观念,学会运用平行线性质解决实际问题。

  3. 情感态度与价值观: 培养学生对几何学的兴趣,体验几何证明的严谨性和逻辑美,提高发现问题、分析问题、解决问题的能力。

  教学重点:

  理解并掌握平行线的'性质,能运用性质进行简单的推理与证明。

  教学难点:

  运用平行线性质解决实际问题,提升空间想象能力。

  教学准备:

  多媒体课件、三角板、量角器、平行线模型、相关习题卡等。

  教学过程:

  【引入新课】

  1. 情境创设:展示生活中常见的平行线实例(如铁路轨道、建筑结构等),引导学生观察并思考其特征,引出平行线概念。

  2. 复习提问:回顾平行线的定义及表示方法,提问学生如何判断两条直线是否平行,为学习平行线性质做好铺垫。

  【新课讲授】

  环节一:探索平行线性质

  1. 动手操作:分组发放平行线模型,让学生利用三角板、量角器等工具测量平行线被第三条直线所截形成的角,记录数据。

  2. 数据分析:汇总各组数据,引导学生发现规律,即同位角相等、内错角相等、同旁内角互补。

  3. 性质归纳:教师结合学生发现,给出平行线性质的正式表述,并强调性质的应用前提——“两直线平行”。

  环节二:性质应用与证明

  1. 例题解析:出示例题,运用平行线性质进行简单的推理或证明,教师边讲解边板书,强调解题思路与步骤。

  2. 学生实践:布置相似题目,让学生尝试独立完成,教师巡视指导,解答疑问。

  环节三:实际问题解决

  1. 情境设置:给出生活或实际问题情境(如设计建筑物、规划道路等),要求学生运用平行线性质进行分析和解答。

  2. 小组讨论:学生分组讨论解决方案,推选代表分享本组思路,教师点评并补充。

  【课堂小结】

  1. 知识回顾:师生共同回顾本节课学习的主要内容——平行线的性质及其应用。

  2. 要点强调:再次强调平行线性质的应用条件及证明过程中应遵循的逻辑顺序。

  【课后作业】

  1. 基础练习:设计与平行线性质直接相关的习题,巩固基础知识。

  2. 拓展思考:提供更具挑战性的几何问题或实际应用题,鼓励学生运用所学知识进行深入探究。

  【教学反思】

  课后反思教学效果,针对学生理解难点、课堂互动情况、作业反馈等进行总结,为后续教学调整提供依据。

【平行线的性质教案设计】相关文章:

平行线的性质教案05-18

平行线性质教学反思08-15

平行线性质的探索教案05-18

平行线的性质教学设计06-19

《平行线的性质》教学反思总结06-20

垂线的性质及平行线的判定总结06-26

磁铁的性质教案设计06-23

《钠的性质》教案设计05-13

平行线及平行公理教案设计05-18

用户协议