实用文档>《有理数的乘方》教案设计

《有理数的乘方》教案设计

时间:2024-09-24 22:03:03

《有理数的乘方》教案设计

  作为一名人民教师,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编帮大家整理的《有理数的乘方》教案设计,欢迎阅读与收藏。

《有理数的乘方》教案设计

《有理数的乘方》教案设计1

  【回顾思考】

  1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。

  2、请合上课本,试着回答下列问题:

  (1)说说什么是乘方?什么是幂?有什么符号法则?

  (2)在做有理数的混合运算时运算顺序怎样?

  (3)举例说明什么是科学记数法?

  (4)举例说明如何确定一个数的有效数字?

  【基础训练】

  一、填空:

  1、根据乘方的意义,(-3)4=;-34=.

  2、的平方等于它本身;的立方等于它本身。

  3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。

  4、若(a-1)2+︳b+2︳=0,那么a+b=。

  5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。

  6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)

  一、填空:

  1、若x20xx=1,则x20xx+2005=。

  2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。

  3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。

  4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。

  5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。

  6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。

  7、3.16×106原数为,精确到位。

  8、写出3,-9,27,-81,243,…这行数的第n个数。

  二、选择:

  1、若规定a⊕b=(a+1)b,则1⊕3的值为()

  (A)1(B)3(C)6(D)8

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列语句中,正确的个数是()

  ①任何小于1的有理数都大于它的平方

  ②没有平方得-9的.数

  二、选择:

  1、下列各组数中,不相等的是()

  (A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣

  2、(-2)11+(-2)10的值是()

  (A)-2(B)(-2)21(C)0(D)-210

  3、下列各式中正确的是()

  (A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣

  4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()

  (A)3×106(B)0.3×107(C)3×107(D)0.3×108

  5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()

  (A)0.1(精确到0.1)(B)0.05(精确到百分位)

  (C)0.05(精确到千分位)(D)0.0502(精确到0.0001)

  三、计算:

  1、8+(-3)2×(-2)

  2、100÷(-2)2-(-2)÷(-2/3)

  3、(-0.25)20xx×(-4)20xx×(-1)20xx

  列方程解应用题的基本关系量:

  (1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度

  (2)工程问题:工作效率×工作时间=工作量

  (3)浓度问题:溶液×浓度=溶质

  (4)银行利率问题:免税利息=本金×利率×时间

《有理数的乘方》教案设计2

  学习目标

  知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

  过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

  情感态度价值观:

鼓励猜想,倡导参与,学会倾听,建立自信心。

  学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

  学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

  学习方法:

探究归纳法

  过程设计:

  一自主研学

  1求n个()的运算叫做乘方,乘方的结果叫做()

  2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。

  3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。

  二合作互学

  知识点1:有关乘方的概念

  1(--3)4表示的意义是(),,底数是(),指数是(),结果是()

  243的底数是()指数是(),表示的意义是(),结果等于()。

  知识点2乘方的运算

  3计算0.0012=();(--?)=()

  知识点3乘方的读法

  4(--2)5读作();---25读作()

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的'长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  三自觉练学

  1(--3)3=(),--52=()

  2立方等于8的数是(),平方等于16的数是()

  3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。

  4(--3×5)2=();--(--2)4=()

  5(--1)20xx=()

  6下列说法正确的是()

  A一个有理数的平方是非负数。B一个有理数的平方是正数。

  C一个有理数的平方大于这个数。D一个有理数的平方大于这个数的相反数。

  7把--(--?)(--?)(--?)(--?)写成乘方的形式是()

  8下列各对数中,值相等的是()

  A--32与--23B--23与(--2)3C--32与(--3)2D(--3)×2与--3×22

  9计算下列各题

  (1)(--?)3(2)--(--3)3(3)8×(--?)2

  (4)(--1)100×(--1)3(5)(--?)3×(--16)

  10阅读材料并解决问题

  你能比较两个数20112012和20122011的大小吗?

  为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。

  (1)计算比较

  12--------2123-------3234--------4345-------5456---------65

  (2)从上面各小题结果归纳,可以猜想什么结论?

  (3)根据归纳猜想的结论比较20112012和20122011的大小。

《有理数的乘方》教案设计3

  三维目标

  一、知识与技能

  掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。

  二、过程与方法

  通过例题学习,发展学生观察、归纳、猜想、推理等能力。

  三、情感态度与价值观

  体验获得成功的感受、增加学习自信心。

  教学重、难点与关键

  1.重点:能正确地进行有理数的加、减、乘、除、乘方的'混合运算。

  2.难点:灵活应用运算律,使计算简单、准确。

  3.关键:明确题目中各个符号的意义,正确运用运算法则。

  四、课堂引入

  1.我们已经学习了哪几种有理数的运算?

  2.有理数的乘方法则是什么?

  五、新授

  下面的算式里有哪几种运算?

  3+5022(-)-1 ①

  这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?

  有理数的混合运算,应按以下运算顺序进行:

  1.先乘方,再乘除,最后加减;

  2.同级运算,从左往右进行;

  3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  例如上面①式

  3+5022(-)-1

  =3+504(-)-1

  =3+50(-)-1

  =3--1

  =-

  例3:计算:(1)2(-3)3-4(-3)+15;

  (2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。

  分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。

  解:(1)原式=2(-27)-(-12)+15

  =-54+12+15

  =-27

  (2)原式=-8+(-3)(16+2)-9(-2)

  =-8+(-3)18-(-4.5)

  =-8-54+4.5=-57.5

  例4:观察下面三行数:

  -2,4,-8,16,-32,64,①

  0,6,-6,18,-30,66, ②

  -1,2,-4,8,-16,32, ③

  (1)第①行数按什么规律排列?

  (2)第②、③行数与第①行数分别有什么关系?

  (3)取每行数的第10个数,计算这三个数的和。

  分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。

【《有理数的乘方》教案设计】相关文章:

《有理数的乘方》教学设计02-13

有理数及其运算复习的教案设计03-19

有理数的乘法教学设计(通用11篇)09-29

让心飞翔教案设计01-24

教案设计:破釜沉舟07-19

《天窗》优秀教案设计06-08

《杨氏之子》教案设计02-11

认识南瓜教案设计02-11

白帆音乐教案设计01-25

食物的变质教案设计02-23

用户协议