《数学史》读后感

时间:2020-12-28 08:50:52 读后感 我要投稿

《数学史》读后感

《数学史》读后感1

  今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。

《数学史》读后感

  体会一:数学源自于与生活的需要与发展。

  书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

  体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。

  历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。

  古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。

《数学史》读后感2

  此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。

  数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。

  作者是按如下的数学史分期为线索进行展开论述的:

  一、数学的起源和发展;

  二、初等数学时期;

  1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。

  三、近代数学时期;

  四、现代数学时期。

  此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,

  出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......

  在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。

  最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。

  我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。

《数学史》读后感3

  《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

  我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!

  第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

  第三次数学危机——我们听过这个名字——罗素,但是紧跟在他的身后的两个字却是那么刺眼——“悖论”。“罗素悖论”的出现使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础。与此同时,歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。数学似乎是再也站不起来了。是的,罗素的观点似乎真的很有道理,危机产生后,数学家纷纷提出自己的解决方案,比如ZF公理系统。这一问题的解决到现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!不过,我们不能蔑视“罗素悖论”,换种说法,不正是这个“悖论”引起了我们的思考吗?不正是这个“悖论”使我们更有创造精神吗?

  我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

《数学史》读后感4

  当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学 发展的实际情况与我们今日所学的数学教科书很不一致。 我们今日中学所学的数学内容基本 上属于 17 世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是 17、18 世纪的高等数学。 这些数学教材业已经过千锤百炼, 是在科学性与教育要求相结合的原则指 导下经过反复编写的, 是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂 的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程 以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时 忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法, 而弥补这方面不足的 最好途径就是通过数学史的学习。 在一般人看来, 数学是一门枯燥无味的学科, 因而很多人视其为畏途, 从某种程度上说, 这是由于我们的数学教科书教授的往往是一些僵化的、 一成不变的数学内容, 如果在数学教 学中渗透数学史内容而让数学活起来, 这样便可以激发学生的学习兴趣, 也有助于学生对数 学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科, 从今天的教育现状来看, 文科与理科的鸿沟导致我们的教 育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会, 正是 由于科学史的.学科交叉性才可显示其在沟通文理科方面的作用。 通过数学史学习, 可以使数 学系的学生在接受数学专业训练的同

  时, 获得人文科学方面的修养, 文科或其它专业的学生 通过数学史的学习可以了解数学概貌, 获得数理方面的修养。 而历史上数学家的业绩与品德 也会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14 世纪以前一直是世界上数学最为发达的国家,出现过许 多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的 算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映, 交替影 响世界数学的发展。由于各种复杂的原因,16 世纪以后中国变为数学入超国,经历了漫长 而艰难的发展历程才渐渐汇入现代数学的潮流。 由于教育上的失误, 致使接受现代数学文明 熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代 数学的辉煌成就, 了解中国近代数学落后的原因, 中国现代数学研究的现状以及与发达国家 数学的差距,以激发学生的爱国热情,振兴民族科学。

  《数学家徐利治的故事》,知道了徐老先生在数学上为祖国做出了贡献,他写的许多论 文在国际上引起了反响,他还培养出一批成材的学生。 徐老先生为什么能成为数学家?为什么能做出这样大的贡献?原因之一, 就是他小时候不怕 困难,刻苦学习。文章里写道:“他在读书时常把伯父给他的午饭钱省下来,用来买书和买 练习本,为了节省用纸,他常用手指在睡觉的凉席上练字,夜深人静,同学们早已进入甜蜜 的梦乡,徐利治却来到走廊,在灯光下认真地学习。白天,他泡在图书馆里用馒头、白开水 充饥……”可以看出,徐老先生小时候学习条件很不好,连买书、买练习本的钱都缺乏,只 好节省午饭钱,然而,他勤奋学习,并不因学习条件差而气馁。 在我们这时代,家庭生活比较富裕,很多家只有一个孩子,零花钱比较多,这些钱我们不是 去打电子游戏,就是去买好吃的。平时,也很浪费,一张纸不是写几个字就扔了,就是折纸 飞机玩,一点也不知道节省。 在学习上,现在很多同学都不认真学习,学习目的不明确,我也是这样,做题稍微遇到 一点困难就气馁了。 我们的学习态度和徐老先生那种废寝忘食的学习精神相比, 真有十万八 千里的差距。

《数学史》读后感5

  我阅读《数学史通论》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史通论》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史通论》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。

  数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

  它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去20xx年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。

  数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

《数学史》读后感6

  为了进一步提高数学教师专业素养,学校为老师们准备了《数学史选讲》这本书,读了以后有点感想。

  数学是几千年来人类智慧的结晶,书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,读后让人初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。 在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。 第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。 第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。 第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。 如果说“危机”是数学长河的主流,那数学史上一道道悬而未解的难题、猜想,就是一朵朵美丽的浪花。费马猜想,历经三百年,终于变成了费马定理;四色猜想,也被计算机攻克。哥德巴-赫猜想,已历经两个半世纪之多,众多的数学家为之竞相奋斗,尽管陈景润跑在了最前面,但最终的证明还是遥遥无期。更有庞加莱猜想、黎曼猜想、孪生素数猜想等……,刺激着数学家的神经,等待着数学家的挑战。 天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。数学家们那种锲而不舍的精神是我们应该努力学习的,正是有了那种精神,他们才能坚守在自己的阵地上直到自己生命的最后一刻,这也许就是他们所认为的幸福。回想我们自身,什么才是我们所追求的呢?什么才是幸福呢?教师职业本身的内涵和学生的健康成长是我们应该追求的目标,享受职业内在的幸福要从做好自己的本职工作开始。 浪花是美丽的,数学更是美丽的,英国数学家罗素说过:“数学不仅拥有真理,而且拥有至高无上的美——一种冷峻严肃的美,即就像是一尊雕塑……这种美没有绘画或音乐那样华丽的装饰,他可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界。”

  这么美的东西除了我们自己感受,还要在学生中去流传,将数学史渗透到数学教学中,可以拓宽学生的视野,提高学生素质,激励学生奋发向上,也能够激发学生们学习数学的兴趣。

【《数学史》读后感】相关文章:

《名人故事》读后感-读后感06-23

高老头读后感作文-读后感04-12

父亲的病读后感-读后感04-12

《童年》读后感_读后感700字09-13

童年600字读后感-读后感06-19

《童年》700字读后感-读后感06-19

《童年》读后感800字-读后感06-17

《童年》读后感 600字_读后感04-01

《童年的秘密》读后感_读后感03-10

边城读后感-读后感-高三01-11