数据分析报告推荐
随着个人素质的提升,报告与我们愈发关系密切,其在写作上有一定的技巧。一听到写报告马上头昏脑涨?以下是小编整理的数据分析报告推荐,希望对大家有所帮助。
数据分析报告推荐1
一、 提出问题
1、单位基本情况及相关业务流程介绍;
对于药店,储存大量的常用药品是必不可少的工作,随之而来的对药品的数据信息管理和储存成为了令人头疼的问题,在接到货源后,工作人员需要统计药品产地和价格的信息,为以后的货源供给地,用合理的价格出售药物,是至关重要的工作。
2、单位存在的问题。
由于货物种类、名称众多,在短时间内分析好相关数据几乎不可能,大量的数据,依靠人力或是非数据统计软件进行统计工作,事倍功半。严重影响药店的正常进货,出售药品的工作。
二、 分析问题
1、对该单位存在的问题进行分析;
由以上问题可见,利用数据挖掘进行相关数据的统计和整理工作,简单、省时、有效。
2、解决问题的可能途径和方法。
利用SQL SEVER 导入数据,再提取统计分析结果,很快会得到想要的数据分析结果。
三、 利用数据挖掘技术解决问题
1、设计数据挖掘算法;
决策树;
数据关联;
神经元算法;
2、对挖掘结果进行深入解释和分析
由此可以看见在不不同的产地,由于地理因素和特产药品的原因,在药品相关的植物盛产区,进货比较便宜。
可以分析出,不同的消费人群对于同类的药品的购买需求,对于同样的功能的药,药存储不同价格的种类,以满足广大消费者的需求。
可以分析以前的销售结果,哪类、什么价格的更受消费者欢迎,方便以后进货。
四、 总结
通过自己的实践,对数据挖掘有了新的认识。简单来说,数据挖掘是基于“归纳”的思路,从大量的数据中(因为是基于归纳的思路,因此数据量的大小很大程度上决定了数据挖掘结果的鲁棒性)寻找规律,为决策提供证据。从这种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的.例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。一下是我参阅资料总结的设计数据挖掘的步骤:
① 理解数据和数据的来源
② 获取相关知识与技术
③ 整合与检查数据
④ 去除错误或不一致的数据。
⑤假设数据模型。
⑥ 实际数据挖掘工作(data mining)。
⑦ 测试和验证挖掘结果(testing and verfication)。
⑧ 解释和应用(interpretation and use)。
由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。
数据分析报告推荐2
数据分析报告顾名思义肯定是要有数据来说话的,这是资料站为您准备的销售数据分析报告,希望你喜欢!销售数据分析工作涉及到销售成本分析(包括原材料成本、制造损耗、运输成本等)、销售利润分析(包括纯利润和毛利润)、客户满意度分析、客户需求分析等。
要进行销售数据分析,主要是统计和分类,必须借助一些工具,单靠人基本是无法完成的,尤其是客户较多或产品比较多的情况下,更是困难。最简单的方法是使用excell,把数据都输进去,然后统计,分类,生产图表,这样就对数据有个比较直观的了解。或者是使用ERP软件或其他一些管理软件,更简单,直接就可以生产图表。然后利用一些统计学的知识对这些数据图表进行分析,了解销售状态,做出决策。下面是写作销售数据分析报告的方式方法。
一、销售数据模型之维度
二、销售数据模型之指标
三、零售数据模型之分析方法
1、ABC分析
ABC分析法又称帕雷托分析法,也叫主次因素分析法。它是根据事物在技术或经济方面的主要特征,进行分类排队,分清重点和一般,从而有区别地确定管理方式的一种分析方法。由于它把被分析的对象分成A、B、C三类,所以又称为ABC分析法。
ABC分析通过用于对一段时间商品销售情况的分析,可以为商品管理提供依据。评估一个商品的销售情况好坏的指标有以下三种:销售额、销售数、毛利。单一用哪个指标进行分析都不够准确,所以对这三个指标同时进行分析,也就是给这三个指标一定的权重。比如销售额占x%;销售数占y%;毛利占z%。则该报表的显示形式如下:
其中:综合值=销售额*x%+销售数*y%+毛利*z%;x%+y%+z%=1;分类结果显示AB或者C;
按照所计算的综合值进行排序,观察累计综合值%的变化情况,将累计额百分数为20%以前的这些商品标记为A类,进行重点管理,采取的策略为对相关品的引进;将累计额百分数在20%—90%之间的商品标记为B类,进行一般管理;将最后的累计额为10%的商品进行淘汰管理。
根据货品管理及销售的情况,对ABC理论进行了一定的变化,这样对零售业的商品管理来说更具有一定的操作性。
2、比较分析
比较分析,也称为对比分析,就是同一个指标在同一类对象的不同实体或同一实体在不同维度上进行对比,从而得出有价值的决策信息的一种方法。非常简单,但直观易懂,在实际中应用非常普遍。同比,也叫同期比,表示和去年同一时间段的比较。
环比,表示本月和上月的比较。一般比较分析会结合图形分析,使得结果更加明显。
3、比率分析
从形式上看,比率分析是指两个指标相除。按指标和实体范围的不同,常用的有以下几种类型:
1、同一实体、同一指标,在不同时间的比率。如销售额增长率等。
2、同一类实体、同一指标,在同一时间的比率。如毛利贡献度、销售额占比等。计算方法是单一实体的指标除以所有实体的指标之和。
3、同一实体、不同指标,在同一时间的比率。如毛利率,周转率等等。这类比率都有特定的商业含义。
4、20—80分析
20—80分析来源于“二八原则”,也叫二八定律或20/80原则,意思是在任何一组东西中,最重要的只占其中一小部分,约20%;其余80%尽管是多数,却是次要的。
在零售业中,可以根据同一类实体在同一指标间进行二八分析;从而选出需要重点管理的对象(20%部分)。一般应用比较广泛的分析对象包括:库存商品(按库存金额进行分析);商品(按销售额或者毛利进行分析);供应商(按销售额或毛利进行分析);客户(按销售额或毛利进行分析)。
5、排序分析
排序分析方法是在销售数据分析中常用的一种方法,就是按照某一指标或某几个指标按照从大到小或者从小到大的顺序排列,这种分析方法的好处在于清晰地让分析者知道最多或最少的实体情况。一般排序分析应用在以下几种情况:
1、同一实体、同一指标在不同时间的排序情况,如某一商品在一个月销售额排序情况;
2、同一类实体、同一指标在同一时间的排序情况,如小类中所有商品在今天的销售额排序;
3、同一实体、同一时间、多个指标排序情况(由主次排序因素组成),比如商品先按销售额排序、再按毛利排序;
4、分组排序分析,如按照供应商分组,对供应商所供应商品的销售额进行排序。
6、动态分析
动态分析法是根据在一段时间内的数据变化,通过计算各种动态分析指标来描述现象发展变化的过程和结果,进而揭示现象发展变化的速度、趋势及规律性,并依此可对现象未来发展做出预测的统计分析方法。
动态分析的指标按其分析应用的情况和计算方法不同可分为两大类,一类是通过将各期发展水平进行平均所形成的,包括平均发展水平、平均增长量、平均发展速度和平均增长速度;另一类是通过发展水平之间的对比计算形成的,包括增长量、发展速度和增长速度等。
发展趋势分析方法是基于动态分析中的一种,分为中短期趋势分析与预测方法、长期趋势分析与预测方法、季节变动分析与预测方法。
7、图形分析
图形分析的方法是利用图形的直观效果来展现查询结果数据,分析图形包括:饼状图、柱状图、折线图、区域图等。从图形分析的方法来说,一般有以下三种方法:
1、对比图示法
通过用图形表现出数据之间的比较关系;
2、曲线图示法
一般用曲线图示法来表明某一实体某个指标的数据发展趋势。
3、因果图示分析法
用因果图示分析法把影响分析问题的诸多因素用图形表现出来,这样就很容易看出主次要因素。一般来说,图形分析是与其他分析结合起来进行分析的,使读者更加清晰、易懂。
8、相关分析
相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓广。其方法用以决定是否可以从其它的变量衡量预测另一主要变量的情形,通过衡量两个随机变量之间“直线关系”的方向与强弱程度来判断这两个变量间的相关性。 在零售业中,相关分析可以应用于以下几种情况:
1、同一实体,不同指标间进行相关分析;比如供应商的销售额与费用的关系;商品的数量与销售额的相关关系;
2、同类实体的同一指标的相关关系,比如供应商间销售额的影响关系;
3、不同实体,不同指标间的相关关系;比如员工数量与企业销售额间的关系;
9、回归分析
回归分析(Regression Analysis)是研究一个变量Y与其它若干变量X之间相关关系的一种数学工具,它是在一组实验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系。通过回归分析,可以把变量间的的复杂的、不确定的关系变得简单化、有规律化。回归分析一般有线性回归分析、非线性回归分析、多元线形回归分析,一般最常用的就是一元线形回归分析。
回归分析作为相关分析的研究方法,同样,在零售业可以对以下情况进行分析:
1、同一实体,不同指标间进行相关分析;比如供应商的销售额与费用的关系;商品的数量与销售额的相关关系;
2、同类实体的同一指标的相关关系,比如供应商间销售额的影响关系;
3、不同实体,不同指标间的相关关系;比如员工数量与企业销售额间的关系;
10、方差分析
一个复杂的事物,其中往往有许多因素互相制约又互相依存。由于各种因素的影响,研究中的数据呈现波动状,造成波动的原因可分为两类,一类是不可控的随机因素,另一类是研究中施加的对结果形成影响的可控因素。方差分析的思想就是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。
11、平衡分析
所谓平衡就是各个互相联系的因素之间,在数量上保持一定的合理的对应关系。平衡分析法是分析事物之间相互关系的一种方法。它分析事物之间发展是否平衡,揭示出事物间出现的不平衡状态、性质和原因,指引人们去研究积极平衡的方法,促进事物的发展。统计平衡分析的主要方法有编制平衡表和建立平衡关系式。
零售业中一般应用的指标包括:
损益平衡点=门店总费用÷毛利率,损益平衡点越低,表示获利时点越快;损益平衡点越高,表示获利时点越慢。
损益平衡点与销货额比=损益平衡点÷销货净额
比率若小于1,表示有盈余,比率越小,盈余越多;比率越大于1,表示有亏损,比率越大,亏损越多。
12、因素分析
因素分析法是用来测定受多种因素影响的某种经济现象总变动中各个因素的影响的方向和影响程度的一种统计分析方法。常见的因素分析方法有以下三种:
1、相关联因素分析法
本方法不是借助于数字模型,而是根据相关因素的性质,表明其数量变化对所研究现象变动的影响关系与制约关系,从本质上讲属于经验方法。比如员工的努力程度正向影响商品的销售额;
2、相乘因素分析法
通过数据间相乘关系来测定各影响因素对某种经济现象总变动的'方向和程度所产生的影响;一般采用通过固定一个因素,来观察另一个因素对结果的影响程度。比如:销售收入=销售数量*商品单价;
3、相加因素分析法
对于某一经济现象的影响是由于其总体内部的各个组成部分(或构成因素)变动影响的结果。如:商家的销售额=门店1销售额+门店2销售额++门店n销售额;
13、结构分析
结构分析法又称为组分析法,是在统计分组的基础上,计算各组成部分所占比重,进而分析某一总体现象的内部结构特征、总体的性质、总体内部结构依时间推移而表现出的变化规律性的统计方法。结构分析法的基本表现形式,就是计算结构指标。其公式是:
结构指标就是总体各个部分占总体的比重,因此总体中各个部分的结构相对数之和,即等于100%。通过结构分析可以认识总体构成的特征。如,在某超市销售额中,食品大类占比36%,非食品大类占比45%,非食品销售占比19%。还可以揭示总体各个组成部分的变动趋势,研究总体结构变化过程,揭示现象总体由量变逐渐转化为质变的规律性。如,某某超市的食品销售额在第一年占30%,第二年占32%,第三年占36%,表明当地顾客群对食品的偏好越来越大,说明超市食品引进应该更加多一些。也可以揭示现象之间的依存关系,如研究某商业企业中商品销售额与供应商的依存关系,可将各商品销售额分组计算每个组相应的供应商情况。例如,某超市年销售额300万元以上的供应商占15%,说明商家企业的商品销售额更多地依赖于那些比较大的供应商的商品。
四、销售数据模型之建立
有了销售数据分析的纬度、分析的指标及对指标的分析方法,那么就可以通过这三者的组建建立销售数据的分析模型。按照这样的方法可以出现以下多种数据分析模型:我们假设纬度有X个,指标有Y个,分析方法有Z个;则:
1、单一纬度、单一指标与分析方法的组合;
比如选择纬度为商品、指标为销售额、分析方法为ABC分析,那么组建出来的模型就为商品销售额的ABC分析;按照这种方法,可以组建X*Y*Z个数据分析模型;
2、多纬度、单一指标与分析方法的组合;
比如纬度选择商品、供应商、指标为销售额、分析方法为排行分析,那么组建出来的模型就为供应商商品按销售额的排行分析;按照这种方法,可以组建的X*X*Y*Z个数据分析模型;
通过这种方式的组建,虽可以建立很多数据分析模型,但由于是组合而成,不见得每个数据分析模型都很有效,故要排除无效的分析模型,选择对企业的业务分析有力度的分析方法来提升企业的业务。
数据分析报告推荐3
一、备案情况概述
11月份武汉市商品房销售备案套数为12945套,销售备案面积为145.66万㎡,成交均价3847元/㎡,总成交金额56.0354亿元。本月日均备案套数431套,日均备案面积4.86万㎡。
与上月相比,本月销售备案套数增长幅度很大,涨幅达到122%!比今年销售状况最好的5月也多出18.7%。综合多方面因素分析,主要有以下两个方面的原因:一方面是自今年国家对房地产行业实施了空前严格的宏观调控以来,市场供求双方都对房地产市场保持观望态度。经过几个月的市场反应,被短暂压抑的市场需求开始释放,由此导致了销售量的剧增;另一方面,也是受国家调控影响,导致往年惯常的“金九银十”局面风光不再,而是出现向十一月转移的趋势,这也促进了本月销售量的增长。此外,在十月末有数个楼盘集中开盘,其销售合同备案的延迟到十一月,这也在一定程度上也促进了本月商品房销售备案量的增长。
房地产新政实施后的几个月内,除8月份处于市场销售淡季最低谷之外,其他几个月的销售量都稳定在相对较低的水平,即使往年市场反应良好的“金九银十”的这两个月的销售量也并没有与其他月份拉开差距。
单就本月销售套数激增这一指标来看,说明市场上仍然存在旺盛的需求。但也并不能就此说明楼市今后走势,究竟是强劲反弹还是昙花一现,需要今后的市场反应来印证。
虽然商品房销售备案套数前几个月基本保持平稳,但商品房成交备案价格却一直呈现微幅上涨趋势,本月成交价格涨幅不足1%。成交价格的持续微幅上涨从另一方面也反映出本地市场的健康和旺盛的需求。
二、销售备案数据分析
1.各区域备案数据
本月销售备案套数最多的区域为江岸区。该区在十一月并没有新项目推出,销售基本都是靠以前的项目的销售的拉动,这显示出该区域众多的供应体量和市场需求。武昌区本月销售备案套数位居第二,近几个月该区域推出新盘较多,且市场反应尚可,此外还有市场反映较好的项目合同延迟到本月备案的因素在内。由于江汉区本月推出新盘相对较多,且多集中在月末,因此虽然本月销售备案套数并不多,但在下月的销售备案情况中将会有体现。
2.各建筑类型备案数据
从销售备案套数方面来说,小高层和高层建筑类型的销售情况要好于其他建筑类型。特别是高层建筑类型,连续几个月的销售数据以及月度新盘状况都表明高层建筑已经成为现在房地产市场上销售和供应的主流。随着高层建筑的不断增多,多层和小高层比重将越来越小。而随着国家全面否决别墅用地,别墅在市场上的出现也将会是越来越少。
3.不同面积段备案数据
从备案套数数据分析,本月120㎡以下的房型占总体销售量的61.7%,比上月有小量的'下降,但依然占据主要地位。而随着房价的持续上涨,120㎡以上的房型总价偏高,相对而言销售存在难度,因此目前这部分房型主要存在于高端住宅和新政实施以前动工的住宅项目中,在新建的项目中也存在部分。随着国家政策的落实到位和地方细则的出台,120㎡以下所占比重将会继续增加。
4.不同户型备案数据
本月销售备案情况显示占主要销售部分的房型是一室、两室两厅、三室两厅和四室两厅,其中三室两厅和两室两厅依然占绝大部分比重,这说明目前市场上的购房需求还属于合理正常化的阶段。而四室三厅、复式住宅和别墅等属于高端客户的户型的销售量比较一般,而这也与高端产品的销售特点是一致的。
5.不同档次备案数据
根据市场信息网统计数据,按不同的价格区间本文将交易价格在2500元/㎡以下的商品房列为普通住房,将交易价格在2500—5499元/㎡的商品房列为中高档住房,交易价格在5500元/㎡以上的(包含别墅)列为高档住房。
本月高档项目销售备案状况比上月有多好转,本月有金都汉宫等高端项目正式销售,且取得不俗的销售业绩,加上以往其他高端项目的销售拉动,备案也比较及时,因此数据有所上升。
占主要部分的还是中档项目即价格在2500-5499元/㎡区间内的项目,2500元/㎡以下的项目一般都在江夏、吴家山等远城区。而实际上,随着房价的上涨,市区内3500元/㎡以下的项目也是比较少了,主要集中在东西湖、后湖等板块,可以说3500-5499元/㎡这个价格区间的销量显示了大多数购房者的真实承受能力,这个价格范围内的项目一般处于中心城区或者近城区,生活便利,离原来的居住地点也不远,相对而言总价也还在可接受的范围内。
6.区域成交价格分析
本月成交备案价格最高的区域是武昌区,由于区域内集中了众多高档项目,而且具有良好的景观资源,因此武昌区的价格近来上涨较快,超过了江汉区。而汉阳区在几个代表性楼盘的拉动和新区建设的利好消息之下,区域成交价格也是持续上涨。
三、增量备案数据分析
1.各建筑类型增量分析
本月新增量中,高层建筑面积新增95.94万㎡,而小高层建筑由于增量较少,反而抵不上销量,两者权衡因此出现存量下跌的状况,也即小高层建筑本月新增量为零,且小高层存量消化了15.84万㎡。根据多方面数据综合分析,高层建筑本月销量和增量都有如此大的量可能有集中备案和报批因素。别墅出现增量则是新政以前的项目的后续工程。
2.不同面积段新增量分析
从上图可以看出本月各个面积段的增量中,140㎡以上的占50%以上,而综合市场因素分析,本月新增项目中并没有如此大的体量,因此本月新增数据依然存在集中备案因素,导致各面积段新增量数据较高。而91-120㎡面积段销售量大于新增量,使得该面积段的存量下跌。
从本月各面积段的增量数据来看,前一段时间趋于稳定的供应结构将会有一定调整,主要体现在大面积房型的供应量将会有一定上升。由于国家规定“90㎡以下户型占总量70%”的硬性指标,因此今后的结构调整仍将是个不得不重视的问题。
3.各区域新增量分析
本月各区域的新增量呈现出参差不齐的现象,武昌区和东西湖区由于几个大盘的推出导致新增量大,而汉阳、洪山等区域也有新项目推出,但新增量依然小于销售量,这反映出目前市场上仍然存在较大需求。
四、总结
本月备案情况无论是销售套数还是销售面积都出现了“井喷”现象,备案套数更是跃居全年最高水平,以往房地产业内的“金九银十”的黄金销售期也似乎转移到十一月。而事实上,从本月新增备案项目、开盘项目、销售状况等方面来看,也确实印证了这一点。但是由于今年的特殊情况,市场对于地产新政的效果需要一段时间才能反映出来,在此期间内因此各项指标都出现了一定量的下跌。而本月备案套数、备案面积的剧增可以理解为前一段时间被压抑的市场供应和需求得到了集中释放的结果。
本月各区域市场体现出一定的不平衡性,主要体现为区域市场上的供求关系不同,从各区域新增量情况来看,有的区域持续大体量供应,而有的区域则增量不抵销量,使得本月消化了部分存量。
同时,根据本月不同面积段的新增量数据显示,140㎡以上的大面积房型在市场上比重增加,一方面带来销售压力的同时,另一方面也使得市场供应结构发生变化,对市场的良性发展产生一定影响。
由于全市高端项目多集中在武昌的临江、临湖区域,因此近来武昌区的成交价格被拉升,导致本月武昌区域成交备案价格高于其他区域。随着金都汉宫的正式销售,全市的高端住宅基本都已经开始销售且在近期内也不会有新的高端项目推出,高端市场竞争越发激烈,而这些高端项目今后走势如何将值得关注。
数据分析报告推荐4
现有数据分析报告当中存在一些问题,我们对现有的数据分析报告当中的问题进行分析,来找到如何做出更高质量的数据分析报告。
一、基础数据的采集缺乏科学依据
基础数据的采集对于整个数据分析报告具有非常重要的意义,基础数据采集的科学性决定了这个数据分析报告是不是有使用价值。只有当数据采集具有科学性、客观、严密的逻辑性时,建立在这样的数据分析基础之上的经济效益评价、现金流量分析以及数据分析结论才具有现实的价值和意义。一般来说,当拿到一个项目时我们首先会结合项目的特点来进行基础数据分析,一个项目刚形成,从无到有的时候,基础数据一般采用一手的数据,因为它没有历史的轨迹来遵循,所以用一手数据资料来进行分析。一手数据的采集方法比如:问卷调查、观察、抽样技术等等,来对一手数据进行分析。通常对拥有大量的历史数据的项目如服装业等,数据采集可借鉴同等的规模或一些历史数据,以他为基础来进一步研究和分析。同时也可借鉴行业公开的资料、网上资料、统计的年鉴等等来进行分析。从现有的数据分析报告来看,很多基础的数据就是简单的摆在那里,没有数据来源,数据提示,没有对基础数据严谨的分析。
作为数据分析报的使用方而言,拿到这样的报告会对于报告的科学性提出质疑。
二、数据分析的过程缺乏逻辑性,论证的结论不具备系统性
很多数据分析报告一般都是前面是一堆数据,后面是一个结论。当真正的研究数据和结论时,是结果单一,数据和结论找不到必然的联系,要不就是只有一个结论,比如对净现值、内部收益率做出说明等等。作为专业的数据分析报告,必须充分的考虑每一个数字科学来源的基础上运用定量的模型来对数据进行分析,一步步推导到数据的结论上。
例如,一个项目不确定性分析,风险概率分析
(一)、 什么是影响这个项目的风险点,这些风险因素就是我们通常意义上的不确定性分析的模型来做
(二)、在这样的风险因素基础上,哪一些风险因素对投资项目的效益有重大影响,这些因素通过敏感性分析可以找出来。
(三)、找出这些风险因素下一步就是分析,这些影响效益的风险点出现的概率有多大?
三步分析完之后,风险对于这个项目的影响就显露出来,到这个时候只是数据分析的第一步工作。有一些数字和比率出现在报告上,更重要的在于结论,针对于这样的分险因素和风险变量(不可避免的),作为数据分析报告必须能搞提出来如何在项目的操作中
有效的防范这些风险。这样的风险点的提出和风险因素的防范对于报告的使用者来说是有意义的。
三、现有的数据分析报的结论单一,仅仅对于项目的可行性和计划性进行研究
建立在定量研究的基础上的数据分析报告和分析师还需要对于整个项目的战略规划提供一些更有价值得东西,包括项目中对于总投资的一些建议。比如总投资规模一定的情况下资金来源于自有资金、借贷资金;借贷资金和自有资金的比例或他的融资安排,如何能确保成本最低。进一步项目的分析,如现金流量的分析可站在项目的角度也可站在投资人的角度,这时候在投资人的角度分析时是自有资金流量表;在项目是否盈利的角度分析时就是全投资的现金流量分析,不同的现金流量表可以对项目和投资人提供一些有价值的结果。
四、数据分析报告现有的形式多
可以表现为商业计划书形式、项目的可行性的研究等,根据委托方的要求操作。作为立项的依据,数据分析报告就是项目的可行性研究报告的形式。从项目的融资角度分析,作融资的依据可以叫做商业计划书形式。从数据分析角度来说,对于委托方而言,可研报告和商业计划书存在不独立性。政府审批项目会委托咨询公司等专业机构进行项目研究,而更多的立项报告的可研报告分析和委托方式一致的`,这样的报告带有一定的目的性和倾向性。从数据分析
角度来说坚持数据的独立性、客观性、公正性是这个行业的最基准的要求。
五、数据分析报告的特点
(一)、 独立性
(二)、 定量研究的分析方法
(三)、 严谨和逻辑性
(四)、 战略规划性
(五)、 在格式上的规范性
(一)、独立性
报告必须独立于委托方、报告的使用方,这样的报告才不会有倾向性。定量研究的分析方法,一个从无到有的项目缺乏历史数据,但不可能独立于享有的经济活动或脱离现有的经济生活。对于这些项目我们采取定性的研究,通过一些专家的论坛、德尔菲法、市场问卷调查等等方法来对于这个项目的市场需求基础数据进行估算,估算的结果再进行定量分析,定向和定量相结合,最终定量化。拿到项目时,有一个总的投资金额、成本效益的分析,首先看项目是在微观经济的角度分析还是在国民经济的角度分析,还是社会经济角度分析,确立着眼点后再进行基础数据的采集,找到适合项目的定量分析方法。进一步通过项目所在行业的特点对于成本和费用做出基础的判断。经济效益用我们学过的模型来进行评判,包括对方
案的选择采取我们能够使用的方法。
(二)、严谨和逻辑性
意味着数据分析报告要有科学的逻辑性,基础数据是怎么来的?有什么依据?对于说明判断又有什么样的依据?有什么样的依据做立足点?基础数据得到后对收入预测判断有什么样的依据?收入预测出来后成本预测是怎么出来的?成本费用的基础数据是怎么样得到的?一步一步进行判断。
(三)、战略规划性
战略规划性越来越成为数据分析报告质量的一个基础要求。当你的数据分析报告能对你的委托方的战略规划进行策划和梳理得时候,数据分析报告的价值就体现出来了。
(四)、在格式上的规范性
格式上要做规范,要有严谨性、专业性和责任性。
(五)、在整体思路明确后一定要涉及到总投资的研究
1、总投资的概念不同的要求有不同的涵盖面,对于项目数据分析而言,我们的投资包括建设投资、建设期利息、流动资金的全部投入,需要和国家现行的规模投资范围相区别。
2、拿到项目时要进行收益的预测,要分清项目是什么样的项目,是新的还是有大量历史数据的项目,决定我们采用的数据模型是建
【数据分析报告】相关文章:
数据分析报告07-28
数据分析报告09-23
数据分析报告02-02
数据分析个人报告10-18
市场数据分析报告11-09
数据分析报告(优秀)07-21
【精】数据分析报告12-10
数据分析报告【热】12-10
销售数据分析报告11-14
数据分析报告模板06-09