《乘法分配律》评课稿

时间:2024-07-16 17:41:33 秀雯 稿件 我要投稿

《乘法分配律》评课稿(通用11篇)

  作为一位不辞辛劳的人民教师,时常需要用到评课稿,在当前新课程改革的背景下,客观、公正、科学地评价课堂教学,对探讨课堂教学规律、提高课堂教学效率、促进学生全面发展、促进教师专业成长有着十分重要的意义。那要怎么写好评课稿呢?以下是小编精心整理的《乘法分配律》评课稿,仅供参考,希望能够帮助到大家。

  《乘法分配律》评课稿 1

  乘法分配律原本是一节抽象枯燥的数学概念课。可在周老师的精心组织与动态演绎之下,却让整节课生动活泼,不仅充满了浓浓的数学味,而且夹杂着一股淡淡的生活味。

  一、注重了对学生行为习惯的培养。

  本课一开始,通过送学生一句话,用看似简单的12个字,不仅拉开了新课的序幕,而且对学生的行为提出了具体要求,比如听要专心,说要大声,学要用心,写要认真。让学生有章可依,注重了对学生行为习惯的培养。

  二、加深了等式的“变形”必须有运算律保证的意识。

  简便运算很大程度上是凑整,但必须在运算律保证下才能将算式恒等变换,整理或改变成运算律的标准式,可学生往往不能深刻地理解这个要领,随意性很强,就会出现许多令人意想不到的变形算式,最终酿成错误。周老师在练习的设计上注重对等式进行“变形”。如后面几道练习与拓展练习中都出现了这种类型的题目。周老师设计了不同层次的练习题,进一步巩固、理解乘法分配律,同时培养学生利用规律解决问题的能力。他的课堂中不同的学生都获得良好的发展。

  三、乘法分配律的教学既注重它的外形结构特点,同时注重其内涵。

  比如在尝试探究环节,先让学生通过计算发现两个算式结果相等,然后引导学生观察发现其外在的结构特点,而后让学生试着用自己的话描述乘法分配律的`特点,最后让学生仿写算式和用字母表示乘法分配律,通过以上几个环节,使学生对乘法分配律的外形特点由模糊不清到清晰可见,最后直至在头脑中成像,让学生亲身经历并体验了知识获得的全过程,培养了学生初步的归纳推理的能力。

  如果说以上环节重点是对乘法分配律的外形轮廓的勾勒的话,那接下来的环节就是对其内涵的深层次挖掘和剖析。

  比如在检测环节,周老师通过多样化的变式练习,步步深入,让学生在一次次的纠错过程中内化新知,掌握新知。特别是闯关习题的设计,以游戏为载体,让学生在一次次快乐的游戏中,多角度多方位完成了知识的建构,这样有助于学生不仅从乘法分配律角度去理解,更从乘法意义角度去理解为什么两个算式是相等的,再一次丰富了分配律的内涵。

  总之,周老师极力引导学生用数学的思维方式去发现、去探索、去感悟,学生的主体性得到了充分的发挥。正如瑞士教育学家所说的:教育的主要责任不是积累知识,而是发展思维。我想,通过这节课的学习,孩子们不仅积累了知识,更发展了思维。

  《乘法分配律》评课稿 2

  今天听了汪蕾老师执教的《乘法分配律》,汪老师的这节课,通过问题设置,引导学生从生活问题入手,让学生由“学会”,变为“会学”。在老师的精心设计下,学生经历了“寻条件、设问题、找方法、明规律、自总结”这样一个知识形成的过程。学生自主探究的过程在整节教学过程中都得以体现。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:

  一、数学问题生活化,能力培养探究中

  在教学中,为学生创设自主学习的平台,以故事情景带领学生进入课堂,引导学生从故事中找条件,设问题,激发学生兴趣,开拓学生思维。学生根据找出的条件和问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。通过自主探究,发现等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。

  二、独立探究自主学习搭好台

  汪老师要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了初步感知,此时汪老师出示问题(32+4)×2○32×2+4×2让学生完成,通过计算再次找到相等关系。不过,如果能让学生自己模仿,自己再写几个类似的等式,学生的印象会更加深刻。

  课堂中学生自主探究式的学习不是一句空话。需要教师的精心设计,做好适时地引导,在这节课上,汪老师抓住学生的已有感知,通过“观察这一组等式,你发现了什么”。为学生提供了发散的`思维空间。提供猜测与验证的机会,将学习的主动权力还给了学生。学生的兴趣激起了探究的火花。整个教学过程体现了让学生观察思考、自主探究、合作交流的学习方式。提高了学生发现问题、分析问题和解决问题的能力。

  《乘法分配律》评课稿 3

  本节课是在学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上进行的。乘法分配律是学习这几个定律的难点。潘老师没有把重点放在数学语言的表达上,而是把重点放在让学生解决一系列的问题,去完整地感知乘法分配律,主动建构乘法的分配律。教师的导学探究问题的非常明确。在实际的课堂教学中,主要体现在以下几个方面:

  1、“情境设计”促进学生对算理的理解,对算理起了支撑的作用。

  《标准》特别强调了计算与情境的关系。创设教学情境,有助于激发学生的学习兴趣,使智力达到最佳激活状态,沟通生活实际与数学学习、具体形象与概括抽象的联系,使学生在解决问题中理解和认识数学。

  本节课潘老师从众多设想中选择具有生活性和趣味性的男女生比赛引入,激发学生探究的兴趣,学生在用两种不同的方法解决这一问题的过程中,感受两种方法之间的联系与区别,体会乘法分配律的合理性,为下面进一步研究理解乘法分配律提供了现实材料。

  2、数形结合,渗透建模思想。

  在本节课的教学中潘老师并没有停留在对乘法分配律的文字归纳上,而是进一步让学生利用数形结合的方式来解释乘法分配律的意义。

  如活动:“写一写这样的等式。要求如下:

  ①写出2~3个这样的等式;

  ②计算等号两边两个算式的值,看看两边是否相等。

  从具体的形出发,抽象出数的运算,又回到形来解释运算的含义通过对乘法分配律几何意义的理解,数形结合,循环往复,对运算算理理解的广度、深度、贯通度都有很好的促进作用,这将有助于学生整体数学素养的提高。

  3、按照初步感知——验证猜测——概括定律的思路探究理解。

  学生通过算式初步感知算式间的联系,一个规律的得出应该通过一组算式的观察得到,只是一个例子就显得十分草率,违背了数学是自然科学的规律,因此潘老师让学生自己出题,自己验证,学生不仅兴趣浓厚,而且主动探究验证,用多个例子得出普遍规律。

  4、质疑教材,大胆尝试。

  新课程提出“用教材”极大地解放了教师,促进了我们做一个有思想的教师,我们在教学中不断研究积累探讨如何用好教材。根据以往乘法分配律的变式多,学生易出错的问题,潘老师大胆尝试把教材中的情境图稍加改变,采取学生独立思考与小组研讨,全班互动交流的基础上发现、归纳乘法分配律,取得了良好的效果。

  5、精挑细选,设计有效练习。

  “用教材”不是简单地照搬书中的练习题,本节课潘老师设计练习题把握从易到难,由知识向能力转化的梯度,既从学生掌握基本知识上考虑,又从训练思维的灵活上设计,寻找除书本外一些题型灵活,内容丰富,具有开拓学生思维举一反三的'习题,增加学生灵活掌握知识的能力,让学生在正、反两方面的练习中,充分地感受乘法分配律的妙用,增强学习数学的兴趣。

  整堂课,潘老师始终关注这学生的情感、兴趣,创设有趣的教学情境,无论课前的谈话还是课堂中的肢体语言都最大限度的调动学生的注意力和兴趣,让学生快乐着,探索着,并时刻体验着成功的快乐。如当一名学生概括乘法分配律就是把一个算式分开时,老师适时赞赏“你真厉害”,我想当学生听到老师这句话时,他的大脑会高速运转,心里比吃了蜜还甜。

  联想自己的课堂教学,我终于明白:数学课要让学生爱学,乐学。老师首先要一切从学生出发,充分调动学生的积极性。

  《乘法分配律》评课稿 4

  今天听了我们教研组的郭印老师的一节数学课《乘法分配律》,让我受到了许多启发,也让我想起了自己刚上岗时的一些教学情景。现结合我平时教学中的一些问题,谈一点自己的心得体会。

  本节课郭老师为学生创设一个展示平台,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。郭老师采取“五步六动”的教学模式展开教学,学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,接着在小组内交流这个等式两边的运算顺序,使学生感知“乘法分配律”,为接下来的探究提供了有力的保障。课堂上郭老师的教态、教风都给我留下了深刻的印象,特别是学生自主上台展示学习效果一环节更让我看到学生的主体地位的良好体现。

  对于一个上岗一年半的教师来说,课堂上难免会出现一些所欠缺。如,郭老师对个别学生的精彩表现并没有及时的进行评价;还有课堂的掌控不够灵活,学生出现争议时教师可以借机进行指导,课堂生成更是体现教师机智的地方,而把握教学各环节时间而没有课上解决是一大遗憾。相信随着我们课后的交流,郭老师在今后的课堂上定能注意这些环节。

  回想自己刚上班时的青涩,再对比现在,更让我感受到“台上一分钟,台下十年功”这句话的贴切。教学是一项细致的.工作,需要平时一点一滴的积累。在以后的教学中,我也要不断地提升自身的素质,博采众长,充分利用一切学习机会,多对比多反思,提高自己驾驭课堂教学的能力。

  相信,随着学校对新教师培养力度的加大,一两年后定会涌现出更多的教学新秀。

  《乘法分配律》评课稿 5

  记得曾经在教孩子们乘法分配律的时候,总是遇到很多问题,对于乘法分配律的应用不是很好,吐槽了很久,现在在教二年级的孩子的时候,我发现其实在二年级已经接触了这方面的知识,只是没有进行归纳而已。

  二年级的课本上有这样一种题型,如:

  (1)6x9=5x9+9=7x9—9=

  (2)9x4=9x3+9=

  9x5—9=

  (3)8x9=7x9+9=9x9—9=

  先计算,你发现了什么?

  我一看到这题,我就想到乘法分配律,但是在二年级刚接触乘法,不可能就跟他们讲乘法分配律。我在上练习课的时候我特意把这题拿出来讲了,我想如果这里学生题解好了,对以后学习乘法分配律是有帮助的。在课堂上,我先让学生自己完成,第一题的第2,3个算式,他们是按照运算顺序来计算的',先算乘法,再算加法或减法,这个没有难度,而且他们根据第一题,后面的两题都不要做,直接写出了结果,每一题中的3个算式的结果是一样的。我就问他们,为什么会出现这样情况?学生就答不上来。我就举了个示范,6x9是6个9相加,5x9+9是5个9相加再加1个9,5个9加1个9是6个9,6个9相加就是6x9,所以5x9+9=6x9=54。学习了乘法的意义,对于这个他们能理解,只是想不到而已,那么7x9—9=,可以交给孩子们完成,第(2)(3)题我也是让学生来说一说。另外我还补充了一题,6x7—14,我发现竟然有孩子会想到14就是2个7,6个7减去2个7就是4个7,就是4x7=28。特别棒!

  《乘法分配律》评课稿 6

  学生在进行了乘法结合律与乘法分配律这两堂课的新课学习之后,不知道是教学方面的设计和学生学习状态等什么方面的原因,总感觉学生在这两个方面的认识存在着很多的疑惑。新教材在对于这种运算定律方面的教学没有要求从文字语言方面加以叙述,只是要求学生能够在观察、发现、猜想、举例、验证、总结的一系列基础上得出规律,尽管课堂上面学生都能够动起来,但是真正地在灵活运用方面确不能够令老师满意,所以在练习课中我们好好地研讨了练习的重点与策略,从实际效果上来说还是不错的。

  课堂的设计首先从学生学习的乘法运算定律入手,让学生能够把乘法交换律、结合律、分配律三者的区别和联系弄清楚;其次是出示了一些在运用定律过程中要经常要用到的口算题,让学生们根据数字的特点做到选择运算定律时心中有数;然后是一系列的填空题与连线题,这些都是仿照定律的模型设计的,使学生明白套用的基本步骤和道理;紧接着接是一组动手计算题,重点是要求学生运用乘法交换律、结合律、分配律去进行解答,但是这是一些基础题,学生应该在课堂学习的基础上基本都能够解答,老师强调解题的格式;在这一些环节的联系之后,本堂课重点的内容也就产生了,老师出示了十道带有技巧的题目,要求学生首先观察,你觉得运用什么方法解决比较简便,第一步怎样操作;可以任意选择一道题;其他同学可以补充不同的意见和方法。这样一来,学生们的积极性高涨,大家踊跃发言,表达自己的观点,发表自己的意见,对于各种不同类型的题目有了一个综合练习;最后出示了两道与实际情景联系紧密的生活中的应用题,需要学生在列出算式之后合理的运用简便方法论加以计算。课堂有层次,练习有坡度,达到了实际的效果。

  自由探索与合作交流是《数学新课标》中提出的学生学习数学的重要方式。教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多。在本节课的'实施中的每一个学习活动,都试图以学生个性思维,自我感悟为前提多次设计了让学生自主探索,合作交流的时间与空间。通过学生的观察,学生之间和谐有效地互动,强化了学生的自我意识,自我感情。

  在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。

  《乘法分配律》评课稿 7

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,因此教学时我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  1、在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有的同学是横向观察,有的是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。提供充分的信息,为学生参与探索学习活动创造条件,没有学生主体的`主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、充分调动学生的学习热情,去猜想——倾听——举例——验证。老师没有过多的讲授,也没有花大量的时间去刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

  《乘法分配律》评课稿 8

  乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

  在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

  在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的'形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

  通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

  所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

  《乘法分配律》评课稿 9

  《乘法分配律》一直是四则运算定律的一个难点,学生最容易出错。比如38与99相乘,就容易出现“只把38与100相乘后再减1”的错误。还有的学生在计算125×48时,会出现“125×(6×8)=125×6+125×8“这样的错误。究其原因,还是未能真正理解乘法的含义和乘法的运算定律。

  在教学中,我也想了很多办法来解决这些问题,比如让学生背乘法分配律的含义,经常让学生做点这样的'易错题。可发现效果不是很明显,尤其是有几个孩子,一会就忘记了。后来,我想:还是必须从理解乘法的意义中去学会乘法分配律。于是,我就在辅导这几名学生时,要求他们说出每一个算式表示的含义,再说一说自己做错的算式的含义,从而在对比中来发现、理解自己的错误,明白了自己错误的原因后,再来思考正确的解题思路,经过几次这样的训练,效果好多了。

  《乘法分配律》评课稿 10

  乘法分配律是人教版四年级数学下册的内容,是一节比较抽象的概念课,是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。因此,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  所以,本课的教学目标,我定位在:

  (1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  (2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  本单元教材的一个鲜明特点是,不再仅仅给出一些数值计算的实例,让学生通过计算,发现规律,而是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,引出运算定律。

  教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用“=”连接,即25×(4+2)=25×4+25×2。我将其首先呈现给学生,目的是结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。

  接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得成功的.动机。

  通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学会了像数学家一样进行研究、发现!这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。纵观教学过程,学生学得轻松,学得主动。

  我通过这节课的教学感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

  《乘法分配律》评课稿 11

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

  一、在对本课的教学目标上,我定位在:

  (1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  (2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  二、在本课教学过程的设计上

  我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:

  (4 + 2)×254×25 + 2×25

  = 6×25 = 100 + 50

  = 150(元)= 150(元)

  此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:

  (a + b)× c = a × c + b × c

  三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。

  1、在完成课本36页做一做时,对应这3道判断题,

  (1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的每一个数,强调乘法分配律的“公平性”。

  (2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的`区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。

  (3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。

  2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:

  通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

  由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。

【《乘法分配律》评课稿】相关文章:

乘法分配律评课稿经典10-02

乘法分配律评课稿04-08

《乘法分配律》评课稿09-10

乘法分配律的评课稿08-24

《乘法分配律》评课稿(5篇)12-15

乘法分配律的评课稿(精选17篇)05-08

乘法分配律的评课稿(通用10篇)11-03

《乘法分配律》评课稿(通用6篇)11-01

《乘法分配律》评课稿汇编5篇05-05