- 相关推荐
《一次函数图像的应用》评课稿(精选15篇)
作为一名人民教师,通常需要准备好一份评课稿,通过评课,可以把教学活动的有关信息及时提供给师生,以便调节教学活动,使之始终目的明确、方向正确、方法得当、行之有效。写评课稿需要注意哪些格式呢?以下是小编帮大家整理的《一次函数图像的应用》评课稿(精选15篇),欢迎阅读,希望大家能够喜欢。
《一次函数图像的应用》评课稿 1
我们共同观看了姜老师执教的《一次函数图像的应用》一课,下面请各位老师根据各自的课堂观察量表对本节课进行分析评议。
我们小组的观察点是教师是否关注学生,是否根据学生的认知基础引导学生自主构建知识体系。观察维度是教学环节设计如何提高学生的数形结合能力和解决实际问题的能力。总的来说,这节课教学环节时间分配较合理,教师引导及时恰当。教师教学思路清晰,教学重点突出,教师由浅入深、轻松愉悦地完成了教学目标。教师亲切的表情、流畅的语言、课件的精心准备等等方面都为学生的引领提供了一个轻松和谐的学习环境。课堂环节设计,教师仔细引导学生通过图象识图辩图,掌握信息,体会分析自变量和因变量的潜在规律,根据了解到的信息,解决提出的问题,提高了学生的数形结合能力。
具体教学过程中,有以下几个环节值得商议:
(1)在教学过程中,学生的'主体地位没有充分展示出来,对于问题的生成,最好是教师引导学生去发现问题,提出问题,给每个学生充分的讲话机会,让他们大胆讲出自己的问题,大胆地参与探索和交流,彼此分享各自的观点和灵感,这样才可以调动学生的自主学习积极性。而不是教师牵着学生走,扼杀了学生的思维。
(2)缺少对学生动手能力的培养。缺少鼓励性评价性语言。通过交流,让学生之间互评,可以充分交流、碰撞,提高学习的主动性,积极性,参与性和创造性,是一种体验式的学习。
(3)小组合作探究再增加一个问题环节效果更好。对于例2的讲解,教师应更加强小组合作的模式,通过小组内探讨发现,找到问题,培养学生数形结合的能力和语言表达能力。
分析建议:
课前整体设计是一体的,但在课堂巩固练习环节时间偏短,可适当在自主探究上再缩短时间,如让学生根据图象口答问题,可直接回答,节省时间。
《一次函数图像的应用》评课稿 2
听了张老师的这节复习课,受益颇多,觉得自己离张高的距离还很远,张老师对课堂的驾驭游刃有余,对复习课定位准确,对教材理解到位又不失深度,紧密根据学情设置课堂内容各环节,自然、流畅又实用。我从以下两方面谈谈自己对本节课的认识:
一、教材理解
一次函数在初中数学函数的起始,是对以前的二元一次方程的升级版,更是以后学习其他函数的`基础,所以一次函数就内容上讲起着承上启下的作用。而《一次函数图像》对学生来说是学习中的一个难点,所以张老师选择在这个单元新课之后上这么一节复习课,本身就是对教材内容精确的把握。
二、学情把握
张老师在课后发表自己的设计意图中有谈到自己的对学情的分析,我认为一位老师课堂内容设置要是脱离了学情,那么这节课注定是作秀、失败的。而张老师的各环节设置紧紧联系学生的认知基础,进行恰到好处地设置问题,从简单的一次图像引入,让学生判断k、b的符号,到后面各问题设置层层递进,由易入难,显得特有层次感。而实际上我所说的“难”,正式这节的亮点问题。从平日生活中的两种灯泡---------节能灯和白炽灯的选择和使用出发设计问题,这本身就能吸引大家眼球,而问题紧密联系一次函数图像对选择方案作出判断,直观形象易懂;并引导学生进行变式训练,对一题进行各方位的改编,而问题又不会让学生“够不着”,在学生认知基础上一点一滴前进,真正提高了学生思考能力、思维能力。
《一次函数图像的应用》评课稿 3
各位老师,下午好!今天听了周老师的《7.5一次函数的简单应用(2)》。他在用好教材,深刻去领会教材的内涵,给我做了很好的榜样,在课堂上上出数学味。我个人认为这节课如何处理例题和通过一次函数图象交点的坐标得到二元一次方程组的解,是教师在挖掘教材时应着重思考的,本节课的本质应该是数学结合思想,也应该在教学过程中应着重体现的。现在我就结合周老师上得这节课谈谈自己的看法。
周老师这节课分为两个环节,第一部分先解决由一次函数图象的交点坐标得到方程组的解,第二部分是例题的教学和对例题做拓展延伸。这样对教材的处理,思路清晰,难易合理,可以很好地落实本节课的教学目标。首先周老师以“y=x+1对于这个等式你有怎样的认识”这样的开放题,让学生各抒己见,其中有学生提到是二元一次方程,
老师再追问方程有多少个解?以这些解作为点的坐标,在直角坐标系中描出这些点,连起来是什么图形?教师再出示y=-2x+4的图象,这两条直线就会有个交点了,问“你对这个交点有怎样的认识”。这样就水到渠成从图象的交点坐标过渡到方程组的解,很自然,学生也理解的很深刻。为了巩固这个知识点,周老师设计了两个练习,第一个是比较容易看出方程组的解,第二个是近似解。教师的目的是为了让学生体验有时通过看图象得到的解有时是近似的。但是当老师对学生的反馈做评价时,有学生说解是,这个解学生其实并不是通过看图象得到的,而是通过解方程得到的。然后教师的处理方法是用投影出示自己的标准答案,再告诉学生解有时是近似的。我认为这里教师应该追问“你这解是怎么得到的?其他同学还有别的答案吗?为什么会出现这样的情况呢?”我想在老师的追问下,学生会对这为什么会是近似解会有更深刻的了解和体会。
对例题的教学,周老师出示例题之后,并没有急于去分析,启发,引导学生用函数的方法去解决,而是放手让学生自己凭自己的理解去解决。这样处理问题,充分体现了“教师是学生学习的组织者,合作者,引导者。”“让不同的学生在数学上得到不同的发展。”之后老师再引导到用函数的图象去解决,但在让学生求函数解析式之前,我认为最好问一下学生问题中有哪些常量,哪些变量,你如何设这些变量,它们之间有怎样的.等量关系吗。这样学生能比较清晰地理解题意,列出解析式。周老师为了让学生学生对s=26t+10这个函数解析式有更深刻的认识,周老师追问了“为什么小慧要的路程要加上10”结果在这问题上纠缠过久,让学生越问越糊涂,导致了后来的时间比较仓促。老师还对这例题做了适当的延伸,问“你还能从图象上得到哪些信息?”“你对图象还有什么疑惑。”这些问题的设置充分体现了教师以人为本的教学思想。最后的问题“你能根据图象编写问题的情境吗?”这个问题比较有难度,应该用“合作学习”的方式让学生相互讨论去解决问题。
总之,周老师能较好的结合本次活动的主题,体现出教材特点,符合学生年龄实际和认识规律,难易适度。教学思路清晰,课堂结构严谨,教学密度合理。面向全体,体现差异,因材施教,全面提高学生素质。传授知识的量和训练能力的度适中,给学生创造机会,让他们主动参与,主动发展。但是老师上课的语调比较平缓,课堂的气氛不是很活跃,问题的设置虽比较开放,但是课堂上生成的不多。这是我本人对这节课的一点看法!
《一次函数图像的应用》评课稿 4
宋老师的一次函数应用这节课从复习引入引导学生回顾函数的三种表示方法,复习正比例函数和一次函数图像的性质。设计本环节的目的是复习旧知,为新课的讲解做铺垫。
(一)创设情境
利用多媒体给出第157页的问题。设计本环节的目的是体现数学来源于生活,为生活服务的理念。进一步引导学生分析题意,找出其中隐含的条件,为问题的解决做准备。
(二)活动探究
探究三个问题,探索并解决情境中所提到的问题,设计本环节的目的.是通过探索活动,让学生在进一步明确“路程时间和速度”关系的基础上,分析所面临的具体问题,寻求解决问题的思路和具体方法,体验在处理一个本源性实际问题面前,数学所具有的价值和魅力,培养学生应用意识和能力。利用多媒体给出教材第158页“交流”问题,加印照片是学生所熟悉的问题,费用多少显然与加印照片的张数有关系,是正比例关系还是一次函数关系?写出函数关系式后,便不难算出用结余的费用最多可以加印几张照片。这也是根据函数值,求与之对应的自变量的值的应用问题。可以在此基础上,让学生根据此背景,在创设一些问题,例如大批加印的优惠问题,两家冲印店的选择问题等,培养学生的创新意识。设计本环节的目的是通过进一步的探究活动,引导学生体会如何通过对文字语言的分析,正确找出等量关系,类比列方程解应用题,列出函数关系式,增强学生的阅读理解能力
(三)实践应用(教材第158页的练习)
本环节是应用本节课所学的知识以及所积累的`学习经验和体验解决问题的过程,即课堂巩固训练。通过练习巩固对知识的应用,培养学生学数学、用数学的思想。
(四)课堂小结如何分析题意?
如何找出题目中的等量关系?新课程目标在”解决问题”中明确规定通过对解决问题过程的反思,来获得解决问题的经验.因此总结所得,培养学生良好的学习习惯,及时反馈学生对方法的掌握.从中考函数应用试题来看,应用问题的材料和背景大多来自于我们的生活,以及新闻、经济等一些社会热点,都是一些我们经常碰到,比较熟悉的有共性的东西,这些应用题在中考中难度中等,但正确度往往不高,有些同学平时碰到这类问题就望题兴叹、一筹莫展,无从下手,缺乏用学过的数学知识解决实际问题的能力,如何使这类问题得到改进,本人觉得首先应重视利用教材培养学生的数学应用意识,摆脱纯演绎数学的模式,尽可能再现数学发现的基本过程,以及数学与生产、生活的联系。这节课就是将学生所学的一次函数的知识与实际问题进行了一次“亲密的接触”。
《一次函数图像的应用》评课稿 5
曾老师《一次函数》一课,展示了一个优秀数学老师的风采,使我从中受益匪浅,我认为这是一堂成功的数学课。这节课创设有利于调动学生学习兴趣和激发求知欲的多种情景,探索有利于培养学生学习态度和对数学自主学习能力的教学策略,探索怎样恰当用新理念进行教学。曾老师的课思路清晰,重点突出。既有充分利用学案导学,又有个人的创新、独到之处,把教学过程变成学生对知识的探索过程,取得了良好的教学效果。
本节课特色有三:
1.学案设计合理,体现了学案的导学性。
课堂中的每个环节,无论是例题、练习题、习题的处理,钟发老师充分放手让学生自己动手,动口,老师只引导点拨,善于启发学生,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一,使学生学习得轻松、愉快。教师个人基本功扎实,教态自然,语言语调好,注意了与学生的沟通,有较强的驾驭课堂的能力。
2.重视数学思想方法的教学。
曾老师从一开始上课就提出以“数形结合”的思想方法解决问题,很自然导入新课。在整节课中也是围绕这个思想展开教学的。而所谓数形结合思想就是在研究问题时把数和形结合起来考虑,或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。一次函数的教学不能单纯的研究函数的式子,必须与函数的图像紧密联系,使数与形结合起来。钟发老师在这方面做的非常好,引导学生画出图像,从图形上找出解题的`思路。为学生以后的学习打下良好的认知基础。
3.注重培养学生良好的学习习惯。
学生在解决问题时,“正比例函数与反比例函数关系不清”,引导学生养成考虑问题要全面的好习惯。同时,在整个课堂教学过程中,及时对例题,习题回顾反思,引导学生对整个知识体系及时总结,提炼出一般规律,从而来解决问题。学生在解决问题时,注重培养学生认真审题,独立思考的习惯。
总之,从曾老师的这节课中我学到了很多,也为自己以后的教学指引了方向。
《一次函数图像的应用》评课稿 6
每次听胡主任上课每次都有不同的收获,不同的感觉,他的教学风格大气,教学设计富有创造性,学生是数学学习的主人,鼓励学考主动参与,积极思考,真正体会学习滋味。
本节课的亮点有:
1、情境的引入新颖,富有创造性,有一种耐人寻味的感觉。老师和一名学生各自伸出一只手用红领巾捆绑着,老师的走动带动着学生也走动。师生表演后,学生带着疑惑走进了今天的课堂。
2、重视学生的.课堂参与,培养学生自主学习的能力。老师给了学生充分的时间自学教材,放手让学生了解新知,完成本节课的知识网络图,抓住本节课的核心内容,及时进行学法指导提出问题“以上概念你是如何理解的?”再次让学生精读教材,提出问题“利用上表你能解决什么问题?”充分地尊重学生个性差异,鼓励学生参与,有的学生利用表格中的`数据来说明“什么是变量,什么是常量?”有的学生用表格的数据来说明“什么是自变量?”,“谁是谁的函数”等问题。学生各抒己见,充分调动了学生参与热情。
3、重视课堂小组的互助合作学习。学生在第二轮精读教材后教师鼓励学生相互交流,用会的学生教不会的学生进行小组合作学习,尤其是在函数的概念理解环节,利用这种合作学习的方法抓住了概念的要点。
《一次函数图像的应用》评课稿 7
这是二次函数的应用课,执教的是蒋老师,蒋老师基本功扎实,教态自然,语言清晰流畅,与学生课堂交流顺畅,是一节比较成功的公开课。
本节课教学目标明确,重难点突出。本节课的难点是根号下二次函数的最值的求法,蒋老师表述很清晰,但运算量很大,建议蒋老师删掉一个最值不在顶点的引例,增加数据简单的矩形问题对角线最值的求法为难点的突破埋下伏笔,这样难点突破有力度。
现在的课堂是生本课堂,蒋老师语速太快讲述过多,学生是在教师引导下被动的思考,应该放手让学生自己思考。如列表,应该放手让学生去列,列错了也没关系,可指出不科学的地方并纠正,学生在调整的`过程中能感悟列表的方法。又如解体后的方法的提炼,也能让学生自己去归纳总结,效果会更好。
我们呼吁,教师要学会课堂留白,把主动权和话语权教给学生,千万不要扼杀学生积极的思维!
《一次函数图像的应用》评课稿 8
从这节课可以看出冯老师本着“以学生为本,以学生的发展为本”的教育理念,精心选取例题,尽力做到了让每一个学生都能在课堂上有所收获。这节课教学脉络清晰,并突出了重点、抓住了关键、突破了难点,在教学的各环节中围绕学习目标、学习重点进行,依据教学实际,灵活而恰当地采用教学方法,拉近了师生之间的情感距离,同时也拉近了学生与社会、与生活之间的距离。课堂上,老师尽可能地组织学生运用合作、小组学习等方式,在培养学生合作与交流能力的同时,调动了每一个学生的参与意识和协作的积极性。
本节课体现了以下几点:
1、以优带差的学习策略,增加了学生学习的参与度。
2、使用知识链接,设置台阶,减缓学习坡度。
3、通过问题初探,搭建引桥,降低学习难度。
4、由一题多变,一题多解,巧用开放,拓展了思维宽度。冯老师在习题的安排上独具匠心,巧妙地安排了一题多变,一题多解,使学生在吃得饱的`基础上又能够吃得好,从而全面激发了学生学习数学的兴趣。
5、课堂把握住了动与静的关系,学生动中有静,静中有动,动静结合;
6、课堂展示了数学课中思与做的关系。
建议:
1、多展示几组专题训练,集中解决本节建立适当坐标系的难点,多用题目,增加训练密度。
2、加强课堂检测,摸清学生掌握程度。
《一次函数图像的应用》评课稿 9
有幸参加初三复习课研讨,临听了张老师所做的《二次函数》一节复习示范课,听后收获颇多,反思很多,感动更多,收获的是她又把我带回丰富多彩的数学世界;反思的是面对中考和课改两大压力,数学课究竟怎么教;同时也为有这样优良素质的教师和务实教研的风气而感动。
作为一名有十几年从事数学工作的教师,我很欣赏张老师的教学风格,语言规范、声音清脆、情感充沛、思路清晰;引导简洁、激励到位、点拨准确、归纳具体;启发性大、针对性强、逻辑合理。课堂中即对二次函数的定义和三种解析式、图像和性质等双基的落实,特别是借助“八字”形象记忆法帮助学生理解性质很贴切,也引导学生经历从解析式到图像再到性质的数学过程,注重培养学生利用配方法进行函数解析式的.演变,利用待定系数法结合所给条件,最佳选择方法求函数解析式,从而提高学生解决实际问题的能力,渗透数形结合思想。特别是关注中考热点、难点问题,如判别曲线与x轴的交点情况,a、b、c的符号与图像的情况。三个二次的关系,动点问题。听后很解渴,是一节上层的复习课。
但是我认为此课也有不足:一是教学节奏过快,中等以下的学生不一定跟上,由于是一课时,涉及二次函数的所有内容都要串上来,教师不得已采用了加快节奏的策略,尖子生能跟并理解,对大部分学生不利。二是个别基础点应该用基础题型夯实,如定义(a≠0)的利用,一般式变顶点式,确定对称轴、顶点。已知三点确定解析式等,使学生基本题型分必得。三是要是一轮复习的话,一课时内容较多,特别是那些难点、热点仅凭教师、学生一说而过恐怕不行,必须一个个敲定。
《一次函数图像的应用》评课稿 10
八年级上册的《正比例函数》,分别由刘老师和吴英老师主讲,风格各异,两节示范课下来,我的收获良多。
首先是刘老师的课,刘老师能根据本课的重点与难点精心设计教学内容,从学生的实际水平出发合理安排教学活动。情境引入是学生身边熟悉的事物买桔子入手,学生根据表格的内容很容易就得出桔子价格y与购买斤数x的函数关系式。从而得出正比例函数的定义。在引导学生画正比例函数的图象过程中,根据学生的实际动手操作,把他们的作品投影出来,对存在问题的画法,如画图时没有超出两个端点的位置,画完图形后忘记把函数式写在图象旁边等,这都是学生稍微不注意就会犯的错误,在课堂教学加以评讲,能及时引起学生的注意,避免以后犯同样的错误。再通过观察,得到正比例函数的图象的`性质。整节课讲练结合,节奏流畅,学生通过老师的引导,发现问题,解决问题,师生关系融洽。
本节课还有一个亮点,就是利用了超级画板进行教学。我在暑假期间也参加了市组织的超级画板的培训,这是一个很好用的工具,特别是在几何图形的教学中,它操作简便,使用灵活,学生能直观地看到图象在不同的象限,点是怎样运动的,它对应的坐标又是怎样变化的。
刘老师毕竟是从教多年,经验丰富的老师,从她的引入我就深深被吸引住了,一段燕鸥迁徙视频,形神具备,有声有色,引入课文恰到好处。刘老师语言幽默,她特别会使用鼓励性的语言来调动学生学习的积极性,她采取小组合作学习的.方法,充分发挥小组的力量,用加分奖励的方法,使各个小组间形成你追我赶的架势,学习气氛一下子就上来了。我当时坐在后面看同学们上课时回答的情况,开始只有几个同学在积极回答,到后来,看到别的小组加分都很多了,一个问题出来同学们争着举手,有几个同学生把手举得很高,但都没机会被老师点到,同学们都希望为自己的小组加分啊。我特别喜欢刘老师的两点法画图,这是我这堂课的又一大收获,两点法,而且只是知道一点而已,就能够把正比例函数的图象画出来,这里非常精彩,我想我上这节课的时候,肯定会把这些好的作图方法介绍给我的学生,从而减少学生学习的负担。
希望市教育局多组织这样好的教研教学活动,我们从中真的学到很多对教学有帮助的东西。
《一次函数图像的应用》评课稿 11
20xx年12月9日,我有幸聆听的昆仑中学王小平老师讲的《反比例函数的图象及性质》。听后感觉颇受启发。
《反比例函数的图象及性质》是九年级数学教材中的`重点内容,也是难点所在,它安排在了学生理解反比例函数的意义并掌握了描点法画函数图象的基础上进行教学。
王老师这节课的优点有以下几个方面:
1、教态大方,教学语言科学规范,简约明了,语速始终,具有启发性。
2、知识的细节方面强调到位。
3、注重了学生动手操作能力的培养,并对图象形状让个别学生进行了交流。
4、教师基本功扎实,板书整齐大方。
最后我说一下我对这节课的一些想法:
1、王老师应该将本节课的内容比例再协调一下,将画图的时间减少一些,重点放在引导学生总结反比例函数的性质上来,可以尝试让学生课前做几个图,降低作图带来的时间差。
2、学生参与课堂较少,练习题的`设置没有层次性。
以上只是我的个人看法,说的不对的地方请批评指正。
《一次函数图像的应用》评课稿 12
这节课采用了“问题——探究”的教学模式,教学过程注重学习方法、思维方法,注重探索方法,注重到学生的思维起点,搭建平台,同时渗透数形结合的思想,增强学生运用数学思想方法解决问题的意识,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”。
本节课从学生回忆一次函数、反比例函数的图象入手,展示生活中与二次函数图象相关的图片激发学生的学习热情引入新课让学生进入独学过程。每个小组成员各自在同一个坐标系内作出一组二次函数图象。在第二部分合作探究的学习过程中教师设计了三个问题:
(1)通常怎样作一个函数的图象,要特别注意什么?
(2)二次函数y=ax2的图象是什么?所画的图象有何相同点,不同点?
(3)在同一个坐标系中画函数y=ax2与y=-ax2的图象怎样画简便?教师的教学设计思路清晰,注意了学生的'知识生成点,教师在整个教学过程中起到一个引领的作用。学生是在围绕教师的教学设计中进行有序地学习,在小组讨论中学生积极参与,体现了学生良好的学习习惯,从学生的课堂反应看,课堂教学效果是比较理想的。
本节课值得商榷的问题
1.学生是第一次接触二次函数,在第一个环节独学过程中学生画出二次函数的图象部分学生是有困难的,有的学生即使能画出来但也不规范,在这一个环节中教师可以结合学生作的图象进行展示说说优缺点,并进行适当的引导和课件示范起到画龙点睛的作用,规范作法和注意事项。
2.在第二个合作交流学习中,教师的问题设置可以更加明确一些,引导学生结合所画的图象从开口方向、对轴性、顶点坐标、增减性等进行总结报告从而得到函数y=ax2性质。
《一次函数图像的应用》评课稿 13
最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨。最初莱布尼茨用“函数”一词表示幂。1755年,瑞士数学家欧拉又给出了不同的函数定义。中文数学书上使用的“函数”一词是转译词,是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的。
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中,它是数学学科的重要概念,也是高中数学的一个核心概念。函数这一章在高中数学中起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从变量间的对应来描绘函数概念,起到了上承集合、下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。学习函数的概念不仅对后继的函数性质等的学习夯实基础,而且可以启发学生用数学的眼光观察生活,将函数的思想融入今后的学习生活,体会数学与生活的紧密联系。
初中的函数定义:在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y随着x的变化而变化,那么变量y叫做变量x的函数,x叫做自变量。表达两个变量之间依赖关系的数学式子称为函数解析式。
课本描述函数时,以“变化过程”为背景,以“变量x的取值有范围”为前提,主要强调“两个变量之间存在着确定的依赖关系”。
高中的函数定义:在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与它对应,那么y是x的函数,记作,x叫做自变量,y叫做应变量,x的取值范围D叫做函数的定义域,和x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
对高中函数定义的理解:
1.函数的核心是对应法则,通常用记号f表示函数的对应法则,在不同的函数中,f的具体含义不一样。函数记号y=f(x)表明,对于定义域D的任意一个x在“对应法则f”的作用下,y都有唯一确定的实数值与它对应。当x在定义域中取一个确定的a,对应的函数值即为f(a)。
2.Y是唯一确定的实数值,函数的对应可以是一对一,多对一,但不可以是一对多。
3.函数的三要素是定义域、值域及对应法则。在函数的三要素中,当其中的两要素已确定时,则第三个要素也就随之确定了。如当函数的定义域,对应法则已确定,则函数的值域也就确定了。
4.函数符号y=f(x)的说明:
(1)“y=f(x)”即为“y是x的函数”的符号表示,不是f与x的乘积;
(2)y=f(x)不一定能用解析式表示,函数的解析式、图象、表格都是表示函数的方法;
(3)f(x)与f(a)是不同的,通常,f(a)表示函数f(x)当x=a时的.函数值;
(4)在同时研究两个或多个函数时,常用不同符号表示不同的函数,除用符号f(x)外,还常用g(x)、F(x)、φ(x)等符号来表示。
5.定义域是函数的重要组成部分,如f(x)=x(x∈R)与g(x)=x(x≥0)是不同的两个函数。
《函数的概念》起始课设定的教学重点应该是“函数概念的形成”。教学中应由实例抽象归纳出函数概念,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高。因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点。
具体授课时可从两个方面进行概念的生成,一方面从现实生活中例举出的物理学、天文学、社会科学的实例,让学生感受到它的数学原型,并且教师提问应层层深入、循序渐进地从几个具体实例中抽象出函数的概念,语言的表达也要精确。另一方面,让学生回忆初中所讲的函数概念,重视与学生原有知识间的联系和递进,也说明了原有概念的不足和重新给出函数概念的必要性。整个教学过程应以学生的思维过程为主线,真正把函数放在日常生活中去,函数概念的生成得体清晰。让函数回归实例,让学生重新体会感受,温故加深体会。第三,让学生通过自己的理解去分析现实生活中的函数关系。这样设置既可突破重难点,又让学生体会了“数学有用数学好用”的数学思想,真正体现学生的主体作用。
当然,对函数概念的理解需要一个过程,并非一次就可以实现,因此教师应善于稚化自己的思维,精心设计、耐心引导方可帮助学生突破难点,最终达到对函数这一重要数学概念较为完整的理解。
《一次函数图像的应用》评课稿 14
今天上午听了我校数学老师唐的《正弦函数图像和性质》一节课,本节课教学设计好,课件制作实用性强,教学流程清楚,环节紧凑、流畅。唐老师授课思路清晰,结构严谨,重难点突出,讲解语言精炼,板书工整,特别注重启发引导,突出学生的主体性地位,引导学生进行主动探究,营造了积极、宽松的教学氛围。具体来说,唐老师的课有如下特点:
1. 教学定位非常准
唐老师对课标的解读、教材的分析有自己独到的见解,教学设计中教学目标、教学重难点把握到位,课堂教学中把握住正弦函数图像及五点法画法这一既是重点又是难点的'内容展开,引导学生进行自主探究,深入理解,抓住教学的关键点,有效的突出了教学重点、突破了教学难点。
2. 课件制作实用性强
唐老师的课件制作针对性强,动画演示效果好,很好的辅助学生理解正弦函数的图像画法的过程。
3. 课堂驾驭能力强
唐老师上课教态自然,语言语调好,板书清楚有条理,个人基本功非常扎实,能与学生进行有效沟通,而且舍得把时间给学生去板演作图、去交流思考思路、去讲解解决问题过程,善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。这是一节非常成功的公开课 。
《一次函数图像的应用》评课稿 15
《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。
首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的`帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。
此外,刘老师教学语言的规范性,教学过程中推理的严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。
第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。
【《一次函数图像的应用》评课稿】相关文章:
《比应用》评课稿04-25
《一次函数》评课稿06-16
一次函数评课稿4篇06-04
八年级数学《一次函数应用》评课稿04-06
浮力的应用评课稿(精选11篇)08-16
一次函数评课稿(通用10篇)05-24
一次函数的性质的评课稿(通用10篇)05-17
《加法运算定律的应用》评课稿06-15
复习课评课稿04-08