五年级上册《植树问题》教案

时间:2024-03-06 18:53:33 芊喜 教案 我要投稿
  • 相关推荐

五年级上册《植树问题》教案(精选11篇)

  在教学工作者开展教学活动前,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么什么样的教案才是好的呢?以下是小编为大家收集的五年级上册《植树问题》教案(精选11篇),仅供参考,欢迎大家阅读。

五年级上册《植树问题》教案(精选11篇)

  五年级上册《植树问题》教案 1

  一、教材

  《植树问题》是《义务教育教科书.数学》五年级册第七单元《数学广角》中的内容。

  教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。

  本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  二、教学目标

  1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

  2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  5.能运用所得到的规律解决实际问题。能和他人合作交流。

  6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  三、重、难点

  重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相

  关的实际问题。

  难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活

  解决一些相关的实际问题。

  四、说教法与学法

  教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。

  学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。

  五、教学流程

  (一)课前互动、引出课题

  师:想让自己的头脑变得更聪明的'同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  (这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)

  (二)探索规律、建立模型

  1.创设情境,引入学习。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由. (创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画。

  (先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)

  3.交流汇报,演示。

  4.比较方案,探究规律。

  (1)间隔数与总长、间距的关系。

  ①出示植树的三种情况,学生观察相同点。

  ②学生汇报,教师板书。

  ③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)

  (2)间隔数与植树棵数之间的关系。

  ①学生观察不同点,教师讲解三种方法的名称。

  ②同桌交流棵树和间隔数的关系。

  ③汇报交流。(板书)

  ④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)

  (3)小结:

  ①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。

  (三)巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  (练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)

  (四)课堂总结,拓展延伸

  六、说板书设计

  (一条线段上的)植树问题

  五年级上册《植树问题》教案 2

  教学内容

  人教版实验教材四下P117-P118页《植树问题》例1、例2

  教学目标

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

  教学难点

  应用植树问题的模型灵活解决一些相关的实际问题。

  设计理念

  新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的'教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

  本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

  教学过程

  一、新课导入

  1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

  板书课题:植树问题

  二、引导探究

  1、创设情境,理解概念

  (1)出示:“为了美化环境,学校准备在操场边上的一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

  (2)理解题意。

  a.读题,从题中你了解到了哪些数学信息?有什么问题?

  b.理解”间隔“的意思?

  C、理解三种种植情况

  (两端都种、一端种、两端不种)

  2、主动探索,发现规律

  (1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

  植树方案

  总长(米)

  间隔(米)

  间隔数 (个)

  棵数(棵)

  种植情况示意图

  (2)学生反馈

  (3)组织讨论:你发现什么规律?

  两端都种时,棵数=间隔数+1

  一端种是时,棵数=间隔数

  两端不种时,棵数=间隔数-1

  3、应用规律,解决问题

  (1)出示例2:

  (2)读题后思考,有什么地方需要提醒同学值得注意的。

  (3)学生独立解题、反馈

  三、回归生活,变式练习

  1、封闭图形相当于一端种

  (1)出示P122练习二十第4题

  圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (2)讨论:封闭图形相当于植树问题中的哪个类型?

  (3)学生独立解题,反馈。

  2、同时出示两道习题:

  (1)锯木头问题(两端都不种)

  一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

  (2)排列问题(两端都种)

  四、欣赏生活中类似于植树问题的事件

  生活中的类似于植树问题的――――欣赏

  五年级上册《植树问题》教案 3

  教材分析

  植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

  教学目标

  1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

  2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

  3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

  教学重点:

  理解间隔数和棵数之间的关系,建构数学模型。

  教学难点:

  建立模型及“一一对应思想”的应用。

  教学过程

  1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

  2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的`5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

  第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

  第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

  第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

  教学反思:

  作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

  1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

  2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

  3、探究得太少,自己说得太多。使课堂不够开放。

  4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

  五年级上册《植树问题》教案 4

  教学内容:

  教材第108页例3及练习二十四相关题目。

  教学目标:

  1.通过观察、操作及交流活动,探索、建构封闭线路上“树的棵数=间隔数”的数学模型,并能利用数学模型解决类似的实际问题。

  2.在解决问题中,渗透数形结合思想和转化的方法,体会解决问题方法的多样化。

  3.培养学生从实际问题中探索规律,找出解决问题有效方法的能力。

  教学重点:

  发现封闭图形中的植树问题的规律,并能够解决简单的相关植树问题。

  教学难点:

  发现封闭图形中的植树问题的规律,并能够解决简单的相关植树问题。

  教学准备:

  多媒体课件、打着结的圆形绳。

  教学过程

  学生活动

  (二次备课)

  一、复习导入

  1.前面我们一起探究了植树问题。沿一条线段植树,会有几种情况?每种情况下,植树棵数和间隔数有什么关系?

  2.导入课题。

  不论是两端都栽、两端都不栽,还是只栽一端,它们都属于线形植树。生活中还有沿圆形花坛摆花,沿正方形(长方形)草坪四周植树的情况(课件展示)这样的植树问题。这节课我们就一起研究封闭图形的植树问题。

  二、预习反馈

  点名让学生汇报预习情况。(重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,什么问题)

  三、探索新知

  1.出示例3。

  学生读题,了解数学信息。

  2.交流探究。

  (1)提出问题:环形植树的间隔数和棵数又有什么关系呢?

  (2)小组合作,解决问题:利用画图等方法交流讨论得出封闭图形中植树棵数和间隔数的关系。

  3.汇报交流,发现规律。

  指名学生介绍自己的做法和发现。

  教师汇总学生的发现,得出规律:

  从图中我们可以看出,有一个间隔就总是有一棵树和它对应,所以,封闭图形植树时,棵数=间隔数。

  4.进一步理解。

  师:这个规律和哪种情况的规律是一致的?(一端栽一端不栽)它们之间有什么联系呢?

  教师利用打结的圆形绳,演示。从一个结处剪开,发现封闭图形中的植树转化为了“一端栽一端不栽”问题。

  5.解决问题。

  利用发现的知识,解决例3。

  学生独立完成。

  四、巩固练习

  1.完成教材第108页做一做。

  独立完成后集体订正。

  2.完成教材练习二十四第13题。

  解决方法多种:

  方法一:先求周长,再用“周长÷间隔长度=间隔数=棵数”算出一共要栽多少棵树。

  方法二:分别求四条边上各栽多少棵,再求一共栽多少棵,注意四个角上的'树不能重复计算。

  3.完成教材练习二十四第11题。

  学生画图,总结规律,解决问题。

  注意:表示规律时方案可以不同。

  五、拓展提升

  1.在一个池塘周围要栽上柳树,每隔6m栽一棵树,池塘周长为420m,一共要栽多少棵柳树?在每两棵柳树之间栽2棵月季,一共栽了多少棵月季?

  420÷6=70(棵)

  70×2=140(棵)

  2.30名同学在老师画好的圆形场地周围玩“丢手绢”游戏。开始时,他们每两人间的距离是1.5m。玩了一会儿,有15名同学被淘汰,剩下的同学继续玩,间隔应改为多少米?1.5×30÷15=3(m)

  六、课堂总结

  通过这节课的学习,你有什么收获?跟大家交流一下。

  七、作业布置

  教材练习二十四第12、14、15题。

  观看图形,发现都是在封闭图形上植树。

  教师根据学生预习的情况,有侧重点地调整教学方案。

  利用已有经验,可“化繁为简”选择一部分画图,得出规律。

  把封闭图形“化曲为直”。

  独立完成后集体订正。

  小组交流讨论,找出解决方法。

  学生尝试画图找到这类问题的规律,再解决问题。

  板书设计

  封闭图形的植树:棵数=间隔数

  一端栽一端不栽

  例3

  120÷10=12(棵)

  答:一共要栽12棵树。

  教学反思

  成功之处:这节课设计具体的操作体验,引导学生进行自主探索,对知识进行建构,体验探究的乐趣。

  不足之处:对封闭图形中的植树问题在实际生活中的应用处理比较仓促,学生理解不充分。

  教学建议:在教学中后面问题的呈现可借助画图或课件中图形演示的形式出现,有助于学生直观地理解。

  五年级上册《植树问题》教案 5

  教学内容

  人教版义务教育课程标准实验教材四年级(下册)第117---118页例1

  教学目标

  1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学过程

  1、课前谈话:

  今天来这里上课,有什么不同的感觉?

  老师挺高兴的,这么多人,正好做一个公益宣传,请看--

  春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!

  一、创设情境,出示问题(2分钟)

  1、揭示课题(2分钟)

  师:你们觉得种树与数学有联系吗?

  生:间隔,米数等等问题。

  师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)

  2、出示问题

  课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。

  二、化繁为简,解决问题(26分钟)

  1、理解信息(2分钟)

  师:能看懂吗?告诉我们哪些信息?

  生:全长100米,每隔5米等等

  师:每隔5米是什么意思?

  生:就是两棵树之间的“间隔”;

  师:“间隔”这个词听过吗?能举几个例子吗?

  比如同学之间,手指之间......都可以看作是间隔。

  师:两端要种什么意思?

  生:头和尾各要种一棵。

  2、形成猜想(1分钟)

  师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!

  生1:200

  生2:201

  生3:202

  师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?

  生:验证。

  3、化繁为简(4分钟)

  师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。

  师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米

  师:才种了35米,一共要种多少米?

  生:1000米。

  师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?

  生:太累了,太麻烦了,太浪费时间了。

  师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

  生:想

  师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)

  3、举例验证(5分钟)

  师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。(课件出示:100米--

  师:你认为取多少长的路,画图种树,比较好验证呢。

  生:5米,10米,15米,20米,25米。

  师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)

  师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。

  4、反馈交流(如何操作还是一个问题)(5分钟)

  请一个小组把自己的研究成果展示在黑板上。

  师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。

  师生互动

  师:这空在这里是怎么回事?

  生:间隔5米;

  师:为什么是空了4个间隔?

  生:20米里正好有4个5米;

  师:怎么算出来的?

  生:20除以5等于4

  师:4个间隔数,空了4次

  师:这样种(板书:两端种),可以吗?)

  5、揭示规律(0.5分)

  师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)

  6、解决问题(3分钟)

  师:现在你能运用这个规律,解决刚才复杂的'问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)

  师:(指着猜想答案)当时你是怎么猜想到200棵的。

  师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!

  7、巩固练习(6分)

  (1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远

  (2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  三、再度猜想,打通联系(10)

  1、过渡设疑

  2、形成猜想

  3、验证猜想

  4、得出结论

  5、打通联系

  四、拓展选择,辨别类型(3分钟)

  师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。

  (1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?

  1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)

  (2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?

  1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)

  (3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?

  1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)

  五、丰富背景,遗留问题。(1.5分钟)

  师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!

  五年级上册《植树问题》教案 6

  教学目标

  1、通过探究发现一条线段上两端要种植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  使学生掌握“两端都要种的植树问题”的解题方法。

  教学难点

  使学生掌握已知株距和全长求株数的方法,以及已知株数和株距求全长的方法。

  教学准备

  多媒体课件、小棒、直尺、卡片、探究表。

  课前互动

  1、同学们,我们先来说说顺口溜,好吗?一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿。会说吗?请继续……

  2、接下来,我们来说一个不一样的,有信心吗?两个手指一个隔(教师示范用手指展示出来,让学生也跟着做),三个手指两个隔,会说吗?请继续……学生说到五个手指四个隔时,引出“间隔,间隔数”的概念。(在数学上,我们把空格叫做间隔,也就是说,5个手指之间有4个间隔?间隔数为4。)

  3、随机请一行同学站起来,不断增减学生,让学生边观察边说,几个同学几个隔,老师发问,哪个间隔长,引出“间隔长”的概念。

  教学过程

  一、引入课题

  生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1、情景导入例题

  ①课件出示校园图片。

  植树不仅能净化空气,还能美化环境。这是我们学校的新校区,绿化校园是我们的一个重要任务。植树节那天,我们全体老师参与了植树活动,(出示综合楼前的小树图片)这是我设计的,你们想知道我是怎样设计的吗?(出示操场图片)这是我们学校的操场,操场外面是一条车道。现在要在车道一边种一行树,校长想在我们班选几名优秀环境设计师完成这项任务。你们想成为优秀环境设计师吗?

  出示示意图及题目:同学们在全长100米的车道一边植树,每隔5米栽一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a、指名读题,问:要求一共要栽多少棵树,首先应该考虑到哪些问题

  b、理解“两端”“一边”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这尺子的两端?一边又是什么意思?

  说明:如果把这根尺子看作是这条车道,在车道的两端要种就是在车道的两头要种。一边栽就是在车道的一旁栽。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  2、引发猜想

  师:三种意见(19棵、20棵、21棵),哪种是正确的呢?

  三、解决两端都种求总长度的实际问题

  同学们发现规律的能力可真不错。下面我们玩个站队的游戏。

  1、这一列共有几个同学?(4个同学现场站队)如果每相邻两个同学的距离是1米,从第1个同学到后一个同学的距离是多少米?

  师:这个问题与刚才的类型有什么不同?学生试做,反馈。

  你运用哪个规律?(间隔长×间隔数=总长度)

  2、这一列共有10个同学呢?100个同学呢?

  3、这个规律,你能算算我们学校综合楼的长度吗?

  出示:学校综合楼前种树,每隔4米种一棵,一共种了15棵树。从第一棵到后一棵一共多少米?学生口答。(示意选拔设计师)

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵数用间隔数+1;还知道通过棵数与间距求总长度。

  四、回归生活,实际应用

  其实,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  1、出示:在一条全长2千米的街道两旁安装路灯(两端也要安装),每个50米安一座,一共要安装多少座路灯?

  问:这道题是不是应用植树问题的规律解决的?学生读题,练习反馈。(示意选拔设计师)

  2、请同学们认真听,伸出右手,用手指记下钟敲打的次数,你发现什么?(次数比间隔数多1)

  出示:广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?

  学生讨论,汇报。(示意选拔设计师)

  五、全课总结

  1、师:同学们今天的表现真不错,运用发现的规律解决了不少问题,你们看,老师把大家的发现编成了一首儿歌,我们一起来读读吧!

  小树苗,栽一栽,两端都栽问题来,间隔数多1是棵数,棵数少1是间隔数,怎样求出间隔数?

  全长除以间隔长度。

  2、师:植树问题中的学问还有很多,在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形中的植树问题,这些都需要同学们在以后的学习中开动脑筋、积极思考才能找到解决问题的好办法。

  例题:

  在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的'距离都相等。求相邻两盏彩灯之间的距离。

  【思路导航】大桥两边一共挂了202盏彩灯,每边各挂202÷2=101盏,101盏彩灯把800米长的大桥分成101-1=100段,所以,相邻两盏彩灯之间的距离是800÷100=8米。

  练习题:

  1、在一条长100米的大路两旁各栽一行树,起点和终点都栽,一共栽52棵,相邻的两棵树之间的距离相等。求相邻两棵树之间的距离。

  2、一座长400米的大桥两旁挂彩灯,每两个相隔4米,从桥头到桥尾一共装了多少盏灯?

  3、六年级学生参加广播操比赛,排了5路纵队,队伍长20米,前后两排相距1米。六年级有学生多少人?

  1、在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了10面。这条道路有多长?

  答:5x(10-1)=45(米)

  2、在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了18盆。这条走廊长多少米?

  答:已知两边放,每边的花盆数是:18+2=9(盆)

  这条走廊长:4x(9-1)=32(米)

  3、在一条20米长的绳子上挂气球,从-端起,每隔5米挂一个气球,一共可以挂多少个气球?

  答:20-5+1=5(个)

  4、在一条长32米的公路一侧插彩旗,从起点到终点共插了5面,相邻两面旗之间距离相等,相邻两面旗之间相距多少米?

  答:32-(5-1)=8(米)

  5、在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等。相邻两把椅子之间相距多少米?

  答:一侧放椅子数:12-2=6(把)

  相邻两把椅子之间相距:25+(6-1)=5(米)

  圆湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树之间种桃树2棵,两棵桃树之间的距离是()。桃树和柳树各植()、()棵。

  分析:在两棵柳树之间种桃树2棵,两棵桃树之间的距离是:9÷(2+1)=3(米);柳树的间隔数是:1350÷9=150(个),那么桃树有:2×150=300(棵),柳树有150棵,据此解答。

  解答:解:9÷(2+1)=3(米),柳树的间隔数是:1350÷9=150(个),柳树:150棵;

  桃树:2×150=300(棵);

  答:两棵桃树之间的距离是3米。桃树和柳树分别植300棵、150棵。

  故答案为:3米,300,150。

  1、一条马路两边共植树160棵,每相邻两棵树之间相隔8米,这条马路长多少米?

  2、在一条长1500米的公路两旁种树,计划相邻的两棵树相隔6米,每侧两端各种一棵,一共需要多少棵树苗?

  3、一座楼房,每上一层楼要走19个台阶,小强回家从一楼要走76个台阶。小强家住几楼?

  4、一条马路长800米,沿路的两旁共有82盏路灯,每两盏路灯相距多少米?

  5、一根木料16米,把它距成4米长的一段,每锯下一段要3分钟。把这根木料全部锯完要多少分钟?

  五年级上册《植树问题》教案 7

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的.。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

  五年级上册《植树问题》教案 8

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学间隔

  1.教学间隔的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的.关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总 长(米)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

  五年级上册《植树问题》教案 9

  教学内容

  义务教育课程标准实验科书(人教版)四年级下册第117--118页例题及相关练习。

  教学目标

  知识性目标:

  1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。2、通过小组合作、交流,使学生发现并理解段数与棵树之间的规律,并利用规律解决一些实际问题。

  能力目标:让学生经历感知、理解知识的过程,进一步培养学生从实际问题中发现规律;运用规律解决问题的能力。2、渗透数形结合的思想,培养学生借助实物,图形解决问题的意识。

  情感目标:培养学生的分析意识,养成良好的交流习惯,感觉日常生活中处处有数学,体验学习的成功喜悦。

  教学重点

  引导学生发现植树与间隔数的关系。

  教学重点

  理解间隔与发现植树棵数的.规律并运用规律解决问题。

  教学准备

  课件、学生用尺子、纸等。

  教学过程

  一、导入新课

  1、讲故事:(略)这个故事告诉我们:我们在说话、做事情时不能信口开河,不加思索来完成。

  2、揭示课题:

  明天就是“六一”儿童节,我们的节日有很多,同学们你们知道吗?3月12日是什么节?(植树节)其实,“植树”这件事还很有数学上的学问,今天我们就来研究“植树问题”(板书课题)

  二、新授。

  1、出示准备题:

  同学们在全长100米的小路去植树,每隔5米分为一段,一共可以分成多少段?

  100÷5=20(段)

  2、出示例题

  同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  (1)读题分析理解:“一边植树,两端要栽”的意义。

  可能许多同学列成:100÷5=20(棵)

  (2)学生试做。

  让学生讨论。

  3、感知间隔的含义

  请你们伸出右手,张开,数一数,5个手指间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间的有几个间隔?4个间隔是在几个手指之间?

  4、学生依次画图,课件依次演示画图过程的算法。

  段数棵数

  12

  23

  34

  56

  通过上面的分析,你发现了什么?

  棵数=段数+1

  或:段数=棵数-1

  5、完成例题。A:先要求出段数:100÷5=20(段)

  B:再次求出棵数:20+1=21(棵)

  6、再次感知,找到规律

  课件上做习题栽了8棵树,有()个间隔。(两端都要栽)

  有20个间隔,栽了()棵树(两端都要栽)

  三、尝试练习,做一做

  课件:

  1、园林工人沿路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  2、做书上的练习P122(练习二十)。T1、T2写在书上。

  四、巩固加深,拓展。

  1、打开书P117读书,思考。

  2、你在这一节课有什么遗憾?

  3、你在这节课中有什么收获?

  4、联系生活举例,加深理解。

  五、总结延伸

  植树问题还有许多学问,今天我们只是解决了两端都栽,如果两端都不栽,封闭图形(如圆形花坛)栽树又怎样计算等待下一节课再去研究。

  五年级上册《植树问题》教案 10

  教学内容

  义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:用解决植树问题的方法解决实际问题。

  教学难点:栽树的棵数与间隔数之间的关系。

  教具准备:多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的'距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五年级上册《植树问题》教案 11

  教前分析:

  1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。

  2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。

  3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。

  教学目标:

  1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

  2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。

  3、情感目标:培养学生保护环境的意识。

  教学要点:

  1、重点:理解种树棵树与间隔数之间的关系。

  2、难点:灵活应用发现的规律解决一些相关的实际问题。

  学习方法:

  动手操作,合作交流

  教学具准备:

  课件、剪纸(小路、小树、房子)、板书用的字条

  教学设计:

  课前谈话:

  人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。

  一、创设情境,导入新课

  师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。

  两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?

  [设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的.知识学习打下良好的基础]

  师:同学们真聪明。

  师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。

  请同学们伸出你的左手张开五指,数数手指之间有几个空?

  生答:4个,这个空我们在数学中把它叫做间隔。

  师:老师要考考同学们的眼力。四根手指之间有几个间隔?

  生答3个

  师:两根手指有几个间隔?

  生答:1

  师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。

  师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!

  师:你有一双善于发现的眼睛。

  师:老师也收集了一些,请看大屏幕。

  [设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]

  师:在数学中,把和间隔有关的问题称为植树问题。

  师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?

  二、探究新知

  光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!

  [设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习。]

  一)动手设计并交流

  1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?

  请你说说看。

  生答:长20米的小路,一边、每隔5米

  2、我们的小路有几边呀!这条路的全长20米,每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。

  3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!

  同学们敢于猜想就向成功迈出了一大步。

  4、我们的数学是一个严谨的学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。

  刚才我们才想出这么多到底哪个答案是正确的呢?

  下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。

  要求:

  1、用一条线段代表20米的小路。

  用最直观、最简洁的图形表示树,把你们的想法动手画一画。

  2、再试一试把你的想法通过算式表示出来。

  3、想一想间隔的个数和树的棵数有什么关系?

  同学们动手画一画,看一看到底需要多少棵?

  [设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]

  画完以后观察一下树的棵数与间隔数有什么关系?

  2、交流展示设计方案

  哪个小组想展示一下你们的合作成果?

  二)探究两端都栽、一端不栽和两端不栽

  师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。

  [设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]

  师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。

  1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!

  间隔数+1=棵数

  棵数-1=间隔数

  归纳:先求:总长÷间隔长=间隔数

  再求棵数=间隔数+1

  同学们的发现太了不起了!

  2、第二种设计方案谁想给它起个名字?

  生答:一端不栽或只栽一端

  名字起的很有特点。

  我们再来观察棵数和间隔数之间有什么关系?

  谁想第一个说?生答:观察真仔细。老师给你点个赞!

  3、这个咱一起给它起个名字吧!

  这时候棵数和间隔数之间有什么关系?

  师:你的发现太有价值啦!

  看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。

  学生展示总结发现

  两端都栽:棵数=间隔数+1

  两端不栽:棵数=间隔数—1

  只栽一端:棵数=间隔数

  为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。

  4、植树问题好解决

  知道间隔是关键

  两端都栽间加1

  两端不栽间减1

  只栽一端与间同

  [设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]

  运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。

  三、巩固练习

  一)准备好接受挑战了吗?同学们请看题

  1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?

  师:真是会思考的孩子。

  2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)

  师:这道题我们首先看属于哪种情况?

  生:两端都不栽,间隔数-1=棵数

  师:你是个会学习的孩子,表现棒极了!

  3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。

  为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?

  首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。

  老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数

  师:同学们很会思考啊!

  4、拓展延伸

  刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:

  把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?

  在解决这个问题时我们可以借助线段图。把答案写练习本上。

  四、课堂小结

  同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?

  生活中处处有数学,希望同学们做生活中的有心人。

  [设计意图:渗透好环保教育,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]

  五、课后作业:

  孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?

【五年级上册《植树问题》教案】相关文章:

植树问题教案03-03

五年级上册植树问题教学设计06-13

五年级上册植树问题教学反思(精选15篇)08-19

植树问题教案(精选13篇)12-09

植树问题封闭图形教案08-25

植树问题教案(精选20篇)05-29

植树问题课文教案08-25

《封闭图形植树问题》教案04-02

五年级上册《植树问题》教学设计(通用10篇)08-19

五年级上册《植树问题》教学反思(通用16篇)01-05