小学一年级上册数学8、7加几教案
教学内容:
苏教版《课程标准实验教科书数学》一年级(上册)第84-85页。
教学目标:
1.使学生经历计算方法的过程,能正确地进行计算。
2.使学生在观察、操作中逐步培养探究、思考的意识和习惯。通过算法多样化,培养学生的创新意识。
3.使学生能运用知识解决生活里的实际问题,体会数学的作用,初步培养数学的应用意识。教学过程:
一、游戏导人,激发兴趣
谈话:小朋友,你们喜欢做游戏吗?现在我们来玩一玩,好不好?
师一边拍手一边有节奏地说:小朋友,我问你,9和几凑满十?
学生:邵老师,告诉你,9和1凑满十
[评析:轻松愉快的课堂气氛为新课的教学奠定了良好的基础,对口令游戏不但复习了10的组成,也为学生探索8、7加几的算法提供了依据。]
二、操作探究,学习新知
1.教学小号图。
(1)提问:这是一幅小号图,谁能说说这幅图的意思?
你能提出一个用加法计算的问题吗?怎样列式?
[评析:让学生先说一说图意,再提出问题,旨在培养学生搜集信息、提出问题的能力。]
(2)提问:8+7等于几?你能从图上看出来吗?在小组里说一说。
(3)谁来说一说你是怎样想的?
学生交流,可能会有下面的想法:
①一个一个数出来的。
②左边8个加2个是10个,10个加5个是15。
③右边7个加3个是10个,10个加5个是15个。
④两个盒子一共20格,现在空掉5格,就是15个。
⑤8+7=8+2+5=15。
⑥8+7=7+3+5=15。
学生在交流第②、③种方法时电脑动画演示小号移动的过程。
[评析:教师充分利用主题图的作用,让学生自主探索8+7的计算策略。以上不同的算法反映了学生的三种认知水平:第①种算法表现出动作把握倾向,认知水平有待提高;第②③④种算法表现出图形把握倾向,这些学生对图形有较强的观察力和想像力;第⑤⑥种算法表现出符号把握倾向,这些学生具有抽象思维能力,认知水平较高。]
2.教学小棒图。
(1)小朋友想出了很多办法计算8+7=15,那你们想不想知道小青椒和小蘑菇是怎样想的?
小青椒是用摆小棒的方法计算的',请你们在小组里说一说,它是怎样想的?指名说一说。
动画演示,学生填出方框里的数。
(2)小蘑菇的想法和小青椒有点不一样,请你们在小组里说一说它又是怎样想的?指名交流。
[评析:设置一个帮助小青椒和小蘑菇的情境,让学生填出方框里的数,有利于培养学生助人为乐的美德,同时使学生的认知水平在原有基础上得到发展。]
(3)这两种方法有什么不一样的地方?有什么一样的地方?小结:这两种方法都是凑十法。
3.(1)教学想想做做第1题。
请小朋友先用学具摆一摆,再计算。学生完成后交流。
(2)(电脑出示想想做做第2题)下面我们来做个圈十游戏。先圈出10个,再计算。
(3)教学想一想。提问:不看图、不摆小棒,你们会这样想吗?请你在书上填一填。
提问:计算8+9还可以想哪些有联系的算式?
谁来说一说。学生可能想到:
①因为9+8=17,所以8+9=17。
②因为9+9=18,所以8+9=17。
③因为8+10=18,所以8+9=17。
④因为17-9=8,所以8+9=17。
[评析:让不同的学生表现不同的思维过程,使他们获得积极的学习体验,感受成功的快乐,同时使他们的创造性思维得到进一步发展。]
(4)小结:我们计算8+9的时候可以想以前学过的算式,这个办法真不错。(电脑出示想想做做第4题)你能很快算出这些题的得数吗?
学生口答。
[评析:通过题组对比,使学生认识到较小数加较大数,可以利用学过的算式直接算出得数,同时体会两个数相加,交换位置,和不变。]
三、寻找规律,巩固新知
1.电脑出示8加几的题目,学生口答,引导学生发现,只要把加上的数分成2和几,就知道得数是十几。小结:发现了这个规律,就会算得又对又快。
[评析:给学生提供丰富的学习素材,让他们去观察、比较,从而发现8加几得数的规律,不但可以提高学生的口算速度,同时也培养了学生探究、思考的习惯。]
2.电脑出示7加儿的题目。提问:那么7加几有这样的规律吗?谁能很快算出这些题目的得数?
3.组织口算比赛男女生各派一名代表,其余打手势。
四、联系生活,解决问题
提问:光会计算还不够,我们还得学会开动脑筋,用学到的知识解决生活中的问题。你们看,面包房里有3袋面包,第一袋装了9个,第二袋装了8个,第三袋装了6个。幼儿园王阿姨要为班上15个小朋友准备点心,你觉得买哪两盒比较合适?在独立思考的基础上组织学生交流。
小结:运用数学知识可以解决生活中的问题。而且,只要肯动脑筋,解决问题的方法往往不止一种。
[评析:教师从现实生活中提出了一个富有挑战性的问题,学生需要在具体的情境中,作出分析、估计和判断。问题解决的过程使学生获得成功的喜悦,同时也增强了学习数学的信心,发展了求异思维,培养了实事求是的态度和创新精神。]
总评:本课的教学,没有严谨的计算方法的讲解和反复的、规范化的算理语言的训练。教师允许学生用适合自己思维特点的形式思考,探索计算方法,形成解决问题的一般策略。学生在获得基本的数学知识和技能的同时,在情感、态度等方面都得到了充分的发展。学生的学习活动是一个生动活泼的、生动的和个性化的过程。