- 相关推荐
《代数式》教案设计
一、教学目标
1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。
2.了解代数式的概念,能说出一个代数式所表示的数量关系。
3.通过用字母表示数,学生学会抽象概括的思维方法。
4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。
5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的教育。
二、教学重点 难点用字母表示数的思想
三.教学工具小黑板 三角尺
四.教学方法 探究法 互动法
五、教学步骤
(一)创设情境,复习导入
1.设疑引入
师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板
师:图中有几种交通工具?
学生活动:观察图形,从中找出答案.(两种:飞机、火车)
【教法说明】图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.
师:这列火车和飞机行驶的路程与时间如下表:
时间(时)
学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.
教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:
(1) 加法交换律 ; 乘法交换律
(2) 交换两个加(或因)数,它们的和(或积)不变
(3) a + b = b + a ; ab = ba
【教法说明】由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.
(三)尝试反馈,巩固练习
师:你还学过哪些用字母表示数的运算律?能写出来吗?
学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)
师:巡视检查,共同与学生评价板演.
【教法说明】通过亲自动手尝试,进一步理解用字母表示数的实际意义.
小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.
(四)变式训练,培养能力
师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)
1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.
2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用L表示周长(单位:cm),则L=_________,用S表示面积(单位:cm2),则S=_____________。
学生活动:在练习本上写出结果,两名学生板演,
教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏 。(3)尽可能化成最简形式
【教法说明】通过练习使学生亲自体会用字母表示数的.广泛性,为今后正确使用奠定基础.
(五)归纳小结
师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!
(六)课堂练习,巩固提高
1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用S表示面积(单位:m2),则S=_______;它和什么图形的面积公式相似?
2.用字母表示(一个或几个)
(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;
(2)2 x 2 = 2 + 2; 3 +—— = 3 x ——; 4 x —— = 4 + —— ; 5 x—— =5 +——,。。。
(3) 3x3—1x1=8, 5x5—3x3=16,9x9—7x7=32, 15x15—13x13=56,。。。
3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,。。。
五、布置作业
.《毕业综合练习册》 P14 例1 P16 第5题
六、板书设计