《二次根式的加减》教案设计
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.
整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的.运算规律也适用于二次根式.
例1.计算:
(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算
(1)(+6)(3-)(2)(+)(-)
分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、巩固练习
课本P20练习1、2.
四、应用拓展
例3.已知=2-,其中a、b是实数,且a+b≠0,
化简+,并求值.
分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?
【《二次根式的加减》教案设计】相关文章:
《二次根式加减》说课稿07-11
二次根式的加减说课稿04-02
二次根式的加减的教学反思12-29
二次根式的加减教学反思06-06
《二次根式加减》说课稿范文02-04
二次根式的加减说课稿范文09-15
《二次根式加减》说课稿范文09-19
《二次根式的加减》教学反思07-12
《二次根式的加减》的教学反思12-20