小学数学三角形内角和教案优秀

时间:2021-09-26 17:38:52 教案 我要投稿

小学数学三角形内角和教案优秀范文

  作为一位杰出的老师,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!以下是小编整理的小学数学三角形内角和教案优秀范文,希望对大家有所帮助。

小学数学三角形内角和教案优秀范文

小学数学三角形内角和教案优秀范文1

  【教学目标】

  1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

  2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  【教学难点】

  对不同探究方法的指导和学生对规律的灵活应用。

  【教具准备】

  课件、表格、学生准备不同类型的三角形各一个,量角器。

  【教学过程】

  一、激趣引入。

  1、猜谜语

  师:同学们喜欢猜谜语吗?

  生:喜欢。

  师:那么,下面老师给大家出个谜语。请听谜面:

  形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

  生:三角形

  2、介绍三角形按角的分类

  师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

  师分别出示卡片贴于黑板。

  3、激发学生探知心里

  师:大家会不会画三角形啊?

  生:会

  师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

  生:试着画

  师:画出来没有?

  生:没有

  师:画不出来了,是吗?

  生:是

  师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

  二、探究新知。

  1、认识三角形的内角

  看看这三个字,说说看,什么是三角形的内角?

  生:就是三角形里面的角。

  师:三角形有几个内角啊?

  生:3个。

  师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

  师:你知道什么是三角形“内角和”吗?

  生:三角形里面的角加起来的度数。

  2、研究特殊三角形的内角和

  师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  师:180°也是我们学习过的什么角?

  生:平角

  师:从刚才两个三角形的内角和的计算中,你发现了什么?

  3、研究一般三角形的内角和

  师:猜一猜,其它三角形的内角和是多少度呢?

  生:

  4、操作、验证

  师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

  要求:

  (1)每4人为一个小组。

  (2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

  (3)验证的方法不只一种,同学们要多动动脑子。

  师:好,开始活动!

  师:巡视指导

  师:好!请一组汇报测量结果。

  生:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

  生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

  师:好!非常好!

  师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

  生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

  师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

  现在老师问同学们,三角形的内角和是多少?

  生:180度。

  师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  三、解决疑问

  师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

  生:没有

  师:那你能用这节课的知识解释一下为什么画不出来吗?

  生:两个直角是180度,没有第三个角了。

  师:如果想画出有两个角是钝角的三角形你能画出来吗?

  生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

  师:学会了知识,我们就要懂得去运用。

  四、巩固提高。

  1、填空。

  (1)三角形的内角和是()度。

  (2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

  2、求下面各角的度数。

  (1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。

  (2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。

  3、判断每组中的三个角是不是同一个三角形中的三个内角。

  (1)80° 95° 5°()

  (2)60° 70° 90°()

  (3)30° 40° 50°()

  4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

  对学生进行思品教育。

  5、思考延伸。

  根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

  6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、总结。

小学数学三角形内角和教案优秀范文2

  【设计理念】

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。

  【学习目标】

  1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。

  2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。

  3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  【教学重点】

  探索和发现“三角形的内角和是180°”。

  【教学难点】

  运用三角形的内角和解决实际问题。

  【教学准备】

  教师:多媒体课件、剪好的不同类型的三角形。

  学生:量角器、剪刀、剪好的不同类型的三角形。

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语。

  师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(课件出示谜语)。

  师:打一几何图形。猜猜看!

  学生猜谜语。

  根据学生的回答,课件出示谜底。

  师:真是三角形,同学们的反应真快!

  2、复习三角形的内容。

  其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?

  指名学生回答。

  (当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)

  3、引出课题。

  师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。

  (板书课题:三角形的内角和)

  二、探究新知

  1、讨论、交流验证知识的方法。

  师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)

  学生汇报:①用量的方法;②用拼的方法;③用折的方法......

  2、操作验证。

  师:同学们的点子还真多!现在请同学们拿出准备好的三角形,

  选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!

  3、学生汇报。

  师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?

  学生汇报,教师适时板书。

  ①用量的方法:

  指名学生汇报度量的结果,教师板书。(指两名学生汇报)

  教师白板演示测量方法,并计算和板书出结果。

  教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)

  师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的结果。看来这个办法不能使人很信服,有没有别的方法验证?

  ②用拼的方法

  a、学生汇报拼的方法并上台演示。

  我这里也有一个钝角三角形,请两名同学上台演示。

  b、请大家四人小组合作,用他的方法验证其它三角形。

  c、展示学生作品。

  d、师课件展示。

  师:我们用量、拼得到了180度,还有什么方法?

  ③用折的方法

  师:还想向同学们请同学们看一看他是怎么折的(课件演示)。

  师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?

  教师根据学生板书:(任意)三角形的内角和是180度。

  ④数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(课件出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。

  三、巩固练习

  数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!

  1、课件出示:我是小判官(对的打“√”错的“×”。)

  强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?

  教师:为什么不是360°?学生回答。

  2、接下来我要奖励你们一个游戏:《帮角找朋友》

  3、求未知角的度数。

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  ①课件出示第一个三角形,学生尝试独立完成,教师巡视。

  教师:刚才,我们利用了三角形的什么?

  ②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。

  a、我三边相等;b、我是等腰三角形,我的顶角是96°。c、我有一个锐角是40°。

  教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。

  四、拓展延伸

  师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(课件出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?

  接着让学生尝试求5边形和6边形的内角和。

  小结:求多边形的内角和,可以从一个顶点出发,引出它的对角线,这样就把这个多边形分割成了N个三角形,它的内角和就是N个180°

  五、课堂总结。

  师:这节课你有什么收获?

  学生自由发言。

  师生交流后总结:知道了三角形的内角和是180度,根据这个规律知道可以用180°减去两个内角的度数,求出第三个未知角的度数。

  同学们,只要我们在日常的学习中,细心观察,大胆质疑,认真研究,一定会有意想不到的收获。

  六、作业布置

  完成教材练习十六的`第1、3题。

  七、板书设计:

  (任意)三角形的内角和是180°

  ∠1+∠2+∠3=180°

  度量剪拼折拼

小学数学三角形内角和教案优秀范文3

  【教学目标】

  1、学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

  2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】

  探究发现和验证"三角形的内角和为180度"的规律。

  【教学难点】

  理解并掌握三角形的内角和是180度。

  【教具准备】

  PPT课件、三角尺、各类三角形、长方形、正方形。

  【学生准备】

  各类三角形、长方形、正方形、量角器、剪刀等。

  【教学过程】

  口算训练(出示口算题)

  训练学生口算的速度与正确率。

  一、谜语导入

  (出示谜语)

  请画出你猜到的图形。谁来公布谜底?

  同桌互相看一看,你们画出的三角形一样吗?

  谁来说说,你画出的是什么三角形?(学生汇报)

  (1)锐角三角形,(锐角三角形中有几个锐角?)

  (2)直角三角形,(直角三角形中可以有两个直角吗?)

  (3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

  看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

  看到这个课题,你有什么疑问吗?

  (1)什么是内角?有没有同学知道?

  内:里面,三角形里面的角。

  三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3。

  (2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

  (3)大胆猜测一下,三角形的内角和是多少度呢?

  【设计意图】创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

  二、探究新知

  有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

  1、确定研究范围

  先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

  只研究你画出的那一个三角形,行吗?

  那就随便画,挨个研究吧?(太麻烦了)

  怎么办?请你想个办法吧。

  分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

  2、探究三角形的内角和

  思考一下:你准备用什么方法探究三角形的内角和呢?

  小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

  小组汇报:

  (1)量一量:把三角形三个内角的度数相加。

  直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

  (2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

  能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

  (3)折一折:把三角形的三个角折下来,拼成了一个平角。

  这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

  总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

  3、演绎推理的方法。

  正方形四个角都是直角,正方形内角和是多少度?

  你能借助正方形创造出三角形吗?(对角折)

  把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

  再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

  这种方法避免了在剪拼过程中操作出现的误差,

  举例验证,你发现了什么?

  通过验证,知道了直角三角形的内角和是180度。

  你能把锐角三角形变成直角三角形吗?

  把锐角三角形沿高对折,分成了两个直角三角形。

  一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360—180=180°)

  通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

  通过刚才的计算,你发现了什么?(锐角三角形内角和180°)

  钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2—90—90=180°

  通过验证,你又发现了什么?(钝角三角形内角和180°)

  4、总结

  通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

  5、想一想,下面三角形的内角和是多少度?(小——大)

  你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

  【设计意图】为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

  三、自主练习

  1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

  2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

  3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

  师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

  4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

  【设计意图】练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

  四、课堂总结

  同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

  真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

  课后反思

  《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°"。

  本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然"。

  为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放"。做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

  教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

  1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

  2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

  3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

  教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

【小学数学三角形内角和教案优秀范文】相关文章:

 三角形的内角和课件和教案05-12

《三角形的内角和》优秀说课稿模板12-28

三角形的内角和试讲稿11-16

初中三角形内角和优秀的教学设计范文(精选5篇)12-27

《三角形的内角和》说课稿7篇11-05

三角形的内角和评课稿01-16

三角形内角和评课稿(6篇)01-16

三角形内角和评课稿6篇01-16

《三角形的内角和》教学反思(通用12篇)12-25

三角形的内角和评课稿(5篇)01-16