高中数学教案模板范文
作为一位兢兢业业的人民教师,总归要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么教案应该怎么写才合适呢?下面是小编整理的高中数学教案模板范文,欢迎阅读与收藏。
高中数学教案1
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的`排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好的推导.
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.
在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:ab,ac,ba,bc,ca,cb,其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数.
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.
在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.
要特别注意,不加特殊说明,本章不研究重复排列问题.
③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的
导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.
公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.
高中数学教案2
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的'组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
【例题示范 探求方法】
(教师活动)打出字幕,给出示范,指导训练.
[字幕]例1 列举从4个元素 中任取2个元素的所有组合.
例2 计算:(1) ;(2) .
(学生活动)板演、示范.
(教师活动)讲评并指出用两种方法计算例2的第2小题.
[字幕]例3 已知 ,求 的所有值.
(学生活动)思考分析.
解 首先,根据组合的定义,有
①
其次,由原不等式转化为
即
解得 ②
综合①、②,得 ,即
[点评]这是组合数公式的应用,关键是公式的选择.
设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.
【反馈练习 学会应用】
(教师活动)给出练习,学生解答,教师点评.
[课堂练习]课本P99练习第2,5,6题.
[补充练习]
[字幕]1.计算:
2.已知 ,求 .
(学生活动)板演、解答.
设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
高中数学教案3
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线 的 轴在 轴上, 轴在 轴上,实轴长等于 ,虚轴长等于 ,焦距等于 ,顶点坐标是 ,焦点坐标是 ,
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
2.又曲线 的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的'两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
【矫正巩固】
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
【迁移应用】
1. 已知双曲线 的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
5. 设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为 .
6. 已知圆 。以圆 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
高中数学教案4
整体设计
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。
三维目标
1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。
2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。
3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。
4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。
重点难点
教学重点
(1)分数指数幂和根式概念的理解。
(2)掌握并运用分数指数幂的运算性质。
(3)运用有理指数幂的性质进行化简、求值。
教学难点
(1)分数指数幂及根式概念的理解。
(2)有理指数幂性质的灵活应用。
课时安排
3课时
教学过程
第1课时
作者:路致芳
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。
思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。
推进新课
新知探究
提出问题
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。
(4)用一个式子表达是,若xn=a,则x叫a的n次方根。
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。
可以看出数的平方根、立方根的概念是n次方根的概念的特例。
提出问题
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
③负数没有偶次方根;0的任何次方根都是零。
上面的文字语言可用下面的式子表示:
a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.
a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在。
零的n次方根为零,记为n0=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例。
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。
解:答案不,比如,64的立方根是4,16的'四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。
根式的概念:
式子na叫做根式,其中a叫做被开方数,n叫做根指数。
如3-27中,3叫根指数,-27叫被开方数。
思考
nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根据n次方根的意义,可得:(na)n=a.
通过探究得到:n为奇数,nan=a.
n为偶数,nan=|a|=a,-a,a≥0,a<0.
因此我们得到n次方根的运算性质:
①(na)n=a.先开方,再乘方(同次),结果为被开方数。
②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数。
n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值。
应用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。
变式训练
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。
思路2
例1下列各式中正确的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。
解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。
(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。
(3)a0=1是有条件的,即a≠0,故C项也错。
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。
例2 3+22+3-22=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。
解析:因为3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。
另解:利用整体思想,x=3+22+3-22,
两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。
变式训练
若a2-2a+1=a-1,求a的取值范围。
解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。
知能训练
(教师用多媒体显示在屏幕上)
1、以下说法正确的是()
A.正数的n次方根是一个正数
B.负数的n次方根是一个负数
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整数集)
答案:C
2、化简下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、计算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。
活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。
通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,当n为奇数,当n为偶数。
当n为奇数时,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。
点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。
课堂小结
学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。
(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
(3)负数没有偶次方根。0的任何次方根都是零。
2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.
作业
课本习题2.1A组1.
补充作业:
1、化简下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
答案:2a-13
3.5+26+5-26=__________.
解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,
不难看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
设计感想
学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学。
第2课时
作者:郝云静
导入新课
思路1.碳14测年法。原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平。而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失。对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半)。引出本节课题:指数与指数幂的运算之分数指数幂。
思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的。这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂。
推进新课
新知探究
提出问题
(1)整数指数幂的运算性质是什么?
(2)观察以下式子,并总结出规律:a>0,
①;
②a8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
④2a10=2(a5)2=a5= 。
(3)利用(2)的规律,你能表示下列式子吗?
,,,(x>0,m,n∈正整数集,且n>1)。
(4)你能用方根的意义来解释(3)的式子吗?
(5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。
讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。
根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。
(3)利用(2)的规律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
结果表明方根的结果和分数指数幂是相通的。
(5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1)。
综上所述,我们得到正数的正分数指数幂的意义,教师板书:
规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1)。
提出问题
(1)负整数指数幂的意义是怎样规定的?
(2)你能得出负分数指数幂的意义吗?
(3)你认为应怎样规定零的分数指数幂的意义?
(4)综合上述,如何规定分数指数幂的意义?
(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?
(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价。
讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。
(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。
规定:正数的负分数指数幂的意义是= =1nam(a>0,m,n∈=N+,n>1)。
(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。
(4)教师板书分数指数幂的意义。分数指数幂的意义就是:
正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。
(5)若没有a>0这个条件会怎样呢?
如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。
(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。
有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。
应用示例
例1求值:(1);(2);(3)12-5;(4) 。
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。
解:(1) =22=4;
(2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.
例2用分数指数幂的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。
例3计算下列各式(式中字母都是正数)。
(1);
(2)。
活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2)=m2n-3=m2n3.
点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。
本例主要是指数幂的运算法则的综合考查和应用。
变式训练
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4计算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活动:先由学生观察以上两个式子的特征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能训练
课本本节练习1,2,3
【补充练习】
教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。
1、(1)下列运算中,正确的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是()
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改写成分数指数幂的形式为()
A. B.
C. D.
(5)化简的结果是()
A.6a B.-a C.-9a D.9a
2、计算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)设5x=4,5y=2,则52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解:。 因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x 所以原式= =12-6-63=-33. 拓展提升 1、化简:。 活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1= -13=; x+1= +13=; 。 构建解题思路教师适时启发提示。 解: = = = = 。 点拨:解这类题目,要注意运用以下公式, =a-b, =a± +b, =a±b. 2、已知,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7; (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47; (3)由于, 所以有=a+a-1+1=8. 点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点: (1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。 (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。 (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q)。 (4)说明两点: ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。 ②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用=am来计算。 作业 课本习题2.1A组2,4. 设计感想 本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。 第3课时 作者:郑芳鸣 导入新课 思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。 思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。 推进新课 新知探究 提出问题 (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律? 2的过剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能给上述思想起个名字吗? (4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗? (5)借助上面的结论你能说出一般性的结论吗? 活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容: 问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。 问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。 问题(3)上述方法实际上是无限接近,最后是逼近。 问题(4)对问题给予大胆猜测,从数轴的观点加以解释。 问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。 讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值。 (2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。 第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。 从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明是一个实数。 (3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识。 (4)根据(2)(3)我们可以推断是一个实数,猜测一个正数的无理数次幂是一个实数。 (5)无理数指数幂的意义: 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。 也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数。我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。 提出问题 (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数? (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗? 活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。 对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。 讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。 (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①ar?as=ar+s(a>0,r,s都是无理数)。 ②(ar)s=ars(a>0,r,s都是无理数)。 ③(a?b)r=arbr(a>0,b>0,r是无理数)。 (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。 实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R)。 ②(ar)s=ars(a>0,r,s∈R)。 ③(a?b)r=arbr(a>0,b>0,r∈R)。 应用示例 例1利用函数计算器计算。(精确到0.001) (1)0.32.1;(2)3.14-3;(3);(4) 。 活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值; 对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可; 对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可; 对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。 学生可以相互交流,挖掘计算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。 例2求值或化简。 (1)a-4b23ab2(a>0,b>0); (2)(a>0,b>0); (3)5-26+7-43-6-42. 活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。 解:(1)a-4b23ab2= =3b46a11 。 点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。 教学目标 1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识; 2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识; 3掌握本章的全部定理和公理; 4理解本章的数学思想方法; 5了解本章的题目类型。 教学重点和难点 重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。 教学设计过程 一、本章的知识结构 二、本章中的概念 1直线、射线、线段的概念。 2线段的中点定义。 3角的两个定义。 4直角、平角、周角、锐角、钝角的概念。 5互余与互补的角。 三、本章中的公理和定理 1直线的公理;线段的公理。 2补角和余角的性质定理。 四、本章中的主要习题类型 1对直线、射线、线段的概念的理解。 例1下列说法中正确的是( )。 A延长射线OP B延长直线CD C延长线段CD D反向延长直线CD 解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。 例2如图1-57中的线段共有多少条? 解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。 2线段的和、差、倍、分。 例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD= BC,那么线段AD是线段AC的( )。 A.B. C. D. 解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。 例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。 解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5 3角的概念性质及角平分线。 例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数。 解:因为OD是∠AOB的平分线,所以∠BOD= ∠AOB;又因为OE是∠BOC的平分线,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°, 所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。 则∠EOD=90°。 例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的度数的比是多少? 解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。 又∠COD=90°,所以∠COB=30°。 则∠AOC=60°,(同角的.余角相等) ∠AOC与∠COB的度数的比是2∶1。 4互余与互补角的性质。 例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。 解:因为COD为直线,∠BOE=90°,∠BOD=45°, 所以∠COE=180°-90°-45°=45° 又AOB为直线,∠BOE=90°,∠COE=45° 故∠COA=180°-90°-45°=45°, 而AOB为直线,∠BOD=45°, 因此∠AOD=180°-45°=135°。 例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。 解:设第一个角为x°,则另一个角为3x°, 依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。 答:一个角为10°,另一个角为30°。 5度分秒的换算及和、差、倍、分的计算。 例9 (1)将4589°化成度、分、秒的形式。 (2)将80°34′45″化成度。 (3)计算:(36°55′40″-23°56′45″)。 解:(1)45°53′24″。 (2)约为8058°。 (3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″) 五、本章中所学到的数学思想 1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。 2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。 3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。 六、本章的疑点和误点分析 概念在应用中的混淆。 例10判断正误: (1)在∠AOB的边OA的延长线上取一点D。 (2)大于90°的角是钝角。 (3)任何一个角都可以有余角。 (4)∠A是锐角,则∠A的所有余角都相等。 (5)两个锐角的和一定小于平角。 (6)直线MN是平角。 (7)互补的两个角的和一定等于平角。 (8)如果一个角的补角是锐角,那么这个角就没有余角。 (9)钝角一定大于它的补角。 (10)经过三点一定可以画一条直线。 解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。 (2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。 (3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。 (4)对.∠A的所有余角都是90°-∠A。 (5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°. (6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。 (7)对。符合互补的角的定义。 (8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。 (9)对。因为钝角的补角是锐角,钝角一定大于锐角。 (10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。 板书设计 回顾与反思 (一)知识结构(四)主要习题类型(五)本章的数学思想 略例1 1 · 2 (二)本章概念· 3 略· (六)疑误点分析 (三)本章的公理和定理· 例9 教材分析: 三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。 教案背景: 通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位. 教学方法: 以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。 教学目标: 借助单位圆探究诱导公式。 能正确运用诱导公式将任意角的三角函数化为锐角三角函数。 教学重点: 诱导公式(三)的推导及应用。 教学难点: 诱导公式的应用。 教学手段: 多媒体。 教学情景设计: 一.复习回顾: 1. 诱导公式(一)(二)。 2. 角 (终边在一条直线上) 3. 思考:下列一组角有什么特征?( )能否用式子来表示? 二.新课: 已知 由 可知 而 (课件演示,学生发现) 所以 于是可得: (三) 设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。 由公式(一)(三)可以看出,角 角 相等。即: . 公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。 设计意图:结合学过的公式(一)(二),发现特点,总结公式。 1. 练习 (1) 设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。 (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。) 三.例题 例3:求下列各三角函数值: (1) (2) (3) (4) 例4:化简 设计意图:利用公式解决问题。 练习: (1) (2) (学生板演,师生点评) 设计意图:观察公式特点,选择公式解决问题。 四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。 五.课后作业:课后练习A、B组 六.课后反思与交流 很荣幸大家来听我的课,通过这课,我学习到如下的东西: 1.要认真的研读新课标,对教学的目标,重难点把握要到位 2.注意板书设计,注重细节的东西,语速需要改正 3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作 4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣 5.上课的生动化,形象化需要加强 听课者评价: 1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。 2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。 3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。 4.评议者:引导学生通过网络进行探究。 建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。 ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好 ( 2)这样子的'教学可以提高上课效率,让学生更多的时间思考 ( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用 ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来 ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少 ( 6)让学生多探究,课堂会更热闹 ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习 ( 8)教学模式相对简单重复 ( 9)思路较为清晰,规范化的推理 (一)教学具准备 直尺,投影仪. (二)教学目标 1.掌握,的定义域、值域、最值、单调区间. 2.会求含有、的三角式的定义域. (三)教学过程 1.设置情境 研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质. 2.探索研究 师:同学们回想一下,研究一个函数常要研究它的哪些性质? 生:定义域、值域,单调性、奇偶性、等等. 师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.) 师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像. 师:请同学思考以下几个问题: (1)正弦、余弦函数的定义域是什么? (2)正弦、余弦函数的值域是什么? (3)他们最值情况如何? (4)他们的正负值区间如何分? (5)的解集如何? 师生一起归纳得出: (1)正弦函数、余弦函数的定义域都是. (2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性. (3)取最大值、最小值情况: 正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1. 余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1. (4)正负值区间: () (5)零点:() () 3.例题分析 【例1】求下列函数的定义域、值域: (1);(2);(3). 解:(1), (2)由() 又∵,∴ ∴定义域为(),值域为. (3)由(),又由 ∴ ∴定义域为(),值域为. 指出:求值域应注意用到或有界性的条件. 【例2】求下列函数的最大值,并求出最大值时的集合: (1),;(2),; (3)(4). 解:(1)当,即()时,取得最大值 ∴函数的最大值为2,取最大值时的集合为. (2)当时,即()时,取得最大值. ∴函数的最大值为1,取最大值时的集合为. (3)若,,此时函数为常数函数. 若时,∴时,即()时,函数取最大值, ∴时函数的最大值为,取最大值时的集合为. (4)若,则当时,函数取得最大值. 若,则,此时函数为常数函数. 若,当时,函数取得最大值. ∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值. 指出:对于含参数的'最大值或最小值问题,要对或的系数进行讨论. 思考:此例若改为求最小值,结果如何? 【例3】要使下列各式有意义应满足什么条件? (1);(2). 解:(1)由, ∴当时,式子有意义. (2)由,即 ∴当时,式子有意义. 4.演练反馈(投影) (1)函数,的简图是() (2)函数的最大值和最小值分别为() A.2,-2 B.4,0 C.2,0 D.4,-4 (3)函数的最小值是() A.B.-2 C.D. (4)如果与同时有意义,则的取值范围应为() A.B.C.D.或 (5)与都是增函数的区间是() A.,B., C.,D., (6)函数的定义域________,值域________,时的集合为_________. 参考答案:1.B 2.B 3.A 4.C 5.D 6.;; 5.总结提炼 (1),的定义域均为. (2)、的值域都是 (3)有界性: (4)最大值或最小值都存在,且取得极值的集合为无限集. (5)正负敬意及零点,从图上一目了然. (6)单调区间也可以从图上看出. (四)板书设计 1.定义域 2.值域 3.最值 4.正负区间 5.零点 例1 例2 例3 课堂练习 课后思考题:求函数的最大值和最小值及取最值时的集合 提示: 教学目标:1.进一步理解线性规划的概念;会解简单的线性规划问题; 2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力; 3.进一步提高学生的合作意识和探究意识。 教学重点:线性规划的概念及其解法 教学难点: 代数问题几何化的过程 教学方法:启发探究式 教学手段:运用多媒体技术 教学过程:1.实际问题引入。 问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远? 2.探究和讨论下列问题。 (1)实际问题转化为一个怎样的数学问题? (2)满足不等式组①的条件的点构成的区域如何表示? (3)关于x、y的一个表达式z=70x+50y的几何意义是什么? (4)z的几何意义是什么? (5)z的最大值如何确定? 让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即 x+y≤12 6x+4y≤60 ① x≥0 y≥0 行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大. 则zmax=6×70+6×50=720 结论:小王和小李分别驾车6小时时,行驶路程最远为720公里. 解题反思: 问题解决过程中体现了那些重要的数学思想? 3.线性规划的有关概念。 什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念. 4.进一步探究线性规划问题的解。 问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远? 要求:请你写出约束条件、目标函数,作出可行域,求出最优解。 问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解? 5.小结。 (1)数学知识;(2)数学思想。 6.作业。 (1)阅读教材:P.60-63; (2)课后练习:教材P.65-2,3; (3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。 《一个数列的研究》教学设计 教学目标: 1.进一步理解和掌握数列的有关概念和性质; 2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力; 3.进一步提高问题探究意识、知识应用意识和同伴合作意识。 教学重点: 问题的提出与解决 教学难点: 如何进行问题的探究 教学方法: 启发探究式 教学过程: 问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论? 研究方向提示: 1.数列{an}是一个等比数列,可以从等比数列角度来进行研究; 2.研究所给数列的项之间的关系; 3.研究所给数列的子数列; 4.研究所给数列能构造的新数列; 5.数列是一种特殊的函数,可以从函数性质角度来进行研究; 6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。 针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。 课堂小结: 1.研究一个数列可以从哪些方面提出问题并进行研究? 2.你最喜欢哪位同学的研究?为什么? 课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化? 2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究? 开展研究性学习,培养问题解决能力 一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。 “问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。 问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。 二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。 (一)关于“问题解决”课堂教学模式 通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的`方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。 (二)数学学科中的问题解决能力的培养目标 数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。 (三)“问题解决”课堂教学模式的教学流程 (四)“问题解决”课堂教学评价标准 1. 教学目标的确定; 2. 教学方法的选择; 3. 问题的选择; 4. 师生主体意识的体现; 5.教学策略的运用。 (五)了解学生的数学问题解决能力的途径 (六)开展研究性学习活动对教师的能力要求 教学目标: 1、理解并掌握曲线在某一点处的切线的概念; 2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法; 3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化 问题的能力及数形结合思想。 教学重点: 理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。 教学难点: 用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。 教学过程: 一、问题情境 1、问题情境。 如何精确地刻画曲线上某一点处的变化趋势呢? 如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。 如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的'直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。 因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。 2、探究活动。 如图所示,直线l1,l2为经过曲线上一点P的两条直线, (1)试判断哪一条直线在点P附近更加逼近曲线; (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗? (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗? 二、建构数学 切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。 思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程? 三、数学运用 例1 试求在点(2,4)处的切线斜率。 解法一 分析:设P(2,4),Q(xQ,f(xQ)), 则割线PQ的斜率为: 当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率; 当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。 从而曲线f(x)=x2在点(2,4)处的切线斜率为4。 解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为: 当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。 练习 试求在x=1处的切线斜率。 解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为: 当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。 小结 求曲线上一点处的切线斜率的一般步骤: (1)找到定点P的坐标,设出动点Q的坐标; (2)求出割线PQ的斜率; (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。 思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程? 解 设 所以,当无限趋近于0时,无限趋近于点处的切线的斜率。 变式训练 1。已知,求曲线在处的切线斜率和切线方程; 2。已知,求曲线在处的切线斜率和切线方程; 3。已知,求曲线在处的切线斜率和切线方程。 课堂练习 已知,求曲线在处的切线斜率和切线方程。 四、回顾小结 1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。 2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。 五、课外作业 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的.几何结构特征?它们由哪些基本几何体组成的? 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7练习1、2(1)(2) 课本P8习题1.1第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 六、布置作业 课本P8练习题1.1B组第1题 课外练习课本P8习题1.1B组第2题 1.2.1空间几何体的三视图(1课时) 一、教学目标 1.知识与技能 (1)掌握画三视图的基本技能 (2)丰富学生的空间想象力 2.过程与方法 主要通过学生自己的亲身实践,动手作图,体会三视图的作用。 3.情感态度与价值观 (1)提高学生空间想象力 (2)体会三视图的作用 二、教学重点、难点 重点:画出简单组合体的三视图 难点:识别三视图所表示的空间几何体 三、学法与教学用具 1.学法:观察、动手实践、讨论、类比 2.教学用具:实物模型、三角板 四、教学思路 (一)创设情景,揭开课题 “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。 在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗? (二)实践动手作图 1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论; 2.教师引导学生用类比方法画出简单组合体的三视图 (1)画出球放在长方体上的三视图 (2)画出矿泉水瓶(实物放在桌面上)的三视图 学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。 作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。 3.三视图与几何体之间的相互转化。 (1)投影出示图片(课本P10,图1.2-3) 请同学们思考图中的三视图表示的几何体是什么? (2)你能画出圆台的三视图吗? (3)三视图对于认识空间几何体有何作用?你有何体会? 教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。 4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。 (三)巩固练习 课本P12练习1、2P18习题1.2A组1 (四)归纳整理 请学生回顾发表如何作好空间几何体的三视图 (五)课外练习 1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。 2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。 1.2.2空间几何体的直观图(1课时) 一、教学目标 1.知识与技能 (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 2.过程与方法 学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。 3.情感态度与价值观 (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何作图在生产活动中的应用。 二、教学重点、难点 重点、难点:用斜二测画法画空间几何值的直观图。 三、学法与教学用具 1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。 2.教学用具:三角板、圆规 四、教学思路 (一)创设情景,揭示课题 1.我们都学过画画,这节课我们画一物体:圆柱 把实物圆柱放在讲台上让学生画。 2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。 (二)研探新知 1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。 画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。 练习反馈 根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。 2.例2,用斜二测画法画水平放置的圆的直观图 教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。 教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。 3.探求空间几何体的直观图的画法 (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。 教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。 (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。 4.平行投影与中心投影 投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。 5.巩固练习,课本P16练习1(1),2,3,4 三、归纳整理 学生回顾斜二测画法的关键与步骤 四、作业 1.书画作业,课本P17练习第5题 2.课外思考课本P16,探究(1)(2) 一、教学目标 【知识与技能】 掌握三角函数的单调性以及三角函数值的取值范围。 【过程与方法】 经历三角函数的单调性的探索过程,提升逻辑推理能力。 【情感态度价值观】 在猜想计算的过程中,提高学习数学的兴趣。 二、教学重难点 【教学重点】 三角函数的单调性以及三角函数值的取值范围。 【教学难点】 探究三角函数的`单调性以及三角函数值的取值范围过程。 三、教学过程 (一)引入新课 提出问题:如何研究三角函数的单调性 (四)小结作业 提问:今天学习了什么? 引导学生回顾:基本不等式以及推导证明过程。 课后作业: 思考如何用三角函数单调性比较三角函数值的大小。 一、教学目标 1.知识与技能 (1)掌握斜二测画法画水平设置的平面图形的直观图。 (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。 2.过程与方法 学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。 3.情感态度与价值观 (1)提高空间想象力与直观感受。 (2)体会对比在学习中的作用。 (3)感受几何作图在生产活动中的应用。 二、教学重点、难点 重点、难点:用斜二测画法画空间几何值的直观图。 三、学法与教学用具 1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。 2.教学用具:三角板、圆规 四、教学思路 (一)创设情景,揭示课题 1.我们都学过画画,这节课我们画一物体:圆柱 把实物圆柱放在讲台上让学生画。 2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。 (二)研探新知 1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。 画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。 练习反馈 根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。 2.例2,用斜二测画法画水平放置的圆的`直观图 教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。 教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。 3.探求空间几何体的直观图的画法 (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。 教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。 (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。 4.平行投影与中心投影 投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。 5.巩固练习,课本P16练习1(1),2,3,4 三、归纳整理 学生回顾斜二测画法的关键与步骤 四、作业 1.书画作业,课本P17练习第5题 2.课外思考课本P16,探究(1)(2) 教学目标: (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。 (2)进一步理解曲线的方程和方程的曲线。 (3)初步掌握求曲线方程的方法。 (4)通过本节内容的教学,培养学生分析问题和转化的能力。 教学重点、难点: 求曲线的方程。 教学用具: 计算机。 教学方法: 启发引导法,讨论法。 教学过程: 【引入】 1、提问:什么是曲线的方程和方程的曲线。 学生思考并回答。教师强调。 2、坐标法和解析几何的意义、基本问题。 对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是: (1)根据已知条件,求出表示平面曲线的方程。 (2)通过方程,研究平面曲线的性质。 事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。 【问题】 如何根据已知条件,求出曲线的方程。 【实例分析】 例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。 首先由学生分析:根据直线方程的知识,运用点斜式即可解决。 解法一:易求线段的中点坐标为(1,3), 由斜率关系可求得l的斜率为 于是有 即l的方程为 ① 分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗? (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。 证明:(1)曲线上的点的坐标都是这个方程的解。 设是线段的垂直平分线上任意一点,则 即 将上式两边平方,整理得 这说明点的坐标是方程的解。 (2)以这个方程的解为坐标的点都是曲线上的点。 设点的坐标是方程①的任意一解,则 到、的距离分别为 所以,即点在直线上。 综合(1)、(2),①是所求直线的方程。 至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的.垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看: 解法二:设是线段的垂直平分线上任意一点,也就是点属于集合 由两点间的距离公式,点所适合的条件可表示为 将上式两边平方,整理得 果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。 这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。 让我们用这个方法试解如下问题: 例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。 分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。 求解过程略。 【概括总结】通过学生讨论,师生共同总结: 分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤: 首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是: (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标; (2)写出适合条件的点的集合 ; (3)用坐标表示条件,列出方程; (4)化方程为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点。 一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。 上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。 下面再看一个问题: 例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。 【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。 解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合 由距离公式,点适合的条件可表示为 ① 将①式移项后再两边平方,得 化简得 由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。 【练习巩固】 题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。 分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。 根据条件,代入坐标可得 化简得 ① 由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为 【小结】师生共同总结: (1)解析几何研究研究问题的方法是什么? (2)如何求曲线的方程? (3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么? 【作业】课本第72页练习1,2,3; 教学目标: 1、使学生了解角的形成,理解角的概念掌握角的各种表示法; 2、通过观察、操作培养学生的观察能力和动手操作能力。 3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化 4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。 教学重点: 理解角的概念,掌握角的三种表示方法 教学难点: 掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化 教学手段: 教具:电脑课件、实物投影、量角器 学具:量角器需测量的角 教学过程: 一、建立角的概念 (一)引入角(利用课件演示) 1、从生活中引入 提问: A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗? B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角? 2、从射线引入 提问: A、昨天我们认识了射线,想从一点可以引出多少条射线? B、如果从一点出发任意取两条射线,那出现的是什么图形? C、哪两条射线可以组成一个角?谁来指一指。 (二)认识角,总结角的定义 3、 过渡:角是怎么形成的呢?一起看 (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。 提问:观察从这点引出了几条射线?此时所组成的图形是什么图形? (2)、判断下列哪些图形是角。 (√) (×) (√) (×) (√) 为何第二幅和第四幅图形不是角?(学生回答) 谁能用自己的话来概括一下怎样组成的图形叫做角? 总结:有公共端点的两条射线所组成的图形叫做角(angle) 角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边. B 0 A 4、认识角的各部分名称,明确顶点、边的作用 (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称) (2)角可以画在本上、黑板上,那角的.位置是由谁决定的? (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。 5、学会用符号表示角 提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示) (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA. (2)观察这两种方法,有什么特点?(字母B都在中间) (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1 (5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。 6、强调角的大小与两边张开的程度有关,与两条边的长短无关。 二、 角的度量 1、学习角的度量 (1)教学生认识量角器 (2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。 提出要求:小组合作边学习测量方法边尝试测量 第一个角,想想有几种方法? 1、要求合作学习探究、测量。 2、反馈汇报:学生边演示边复述过程 3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。 4、归纳概括测量方法(两重合一对) (1)用量角器的中心点与角的顶点重合 (2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合) (3)另一条边所对的角的度数,就是这个角的度数。 5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。 6、独立练习测量角的度数(书做一做中第一题1,3与第二题) (1) 独立测量,师注意查看学生中存在的问题。 (2) 课件演示纠正问题 三、度、分、秒的进位制及这些单位间的互化 为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″. 1°=60′,1′=60″; 1′=( )°,1″=( )′. 例1 将57.32°用度、分、秒表示. 解:先把0.32°化为分, 0.32°=60′×0.32=19.2′. 再把0.2′化为秒, 0.2′=60″×0.2=12″. 所以 57.32″=57°19′12″. 例2 把10°6′36″用度表示. 解:先把36″化为分, 36″=( )′×36=0.6′ 6′+0.6′=6.6′. 再把6.6′化为度, 6.6′=( )°×6.6=0.11°. 所以 10°6′36″=10.11°. 四、巩固练习 课本P122练习 五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么? 六、作业:课本P123 3、4.(1)(3)、5.(2)(4) 教学目标: 1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系. 2.会求一些简单函数的反函数. 3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识. 4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力. 教学重点:求反函数的方法. 教学难点:反函数的概念. 教学过程: 教学活动 设计意图一、创设情境,引入新课 1.复习提问 ①函数的概念 ②y=f(x)中各变量的意义 2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容. 3.板书课题 由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性. 二、实例分析,组织探究 1.问题组一: (用投影给出函数与;与()的图象) (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.) (2)由,已知y能否求x? (3)是否是一个函数?它与有何关系? (4)与有何联系? 2.问题组二: (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数? (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数? (3)函数 ()的定义域与函数()的值域有什么关系? 3.渗透反函数的概念. (教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力. 通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础. 三、师生互动,归纳定义 1.(根据上述实例,教师与学生共同归纳出反函数的定义) 函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的`值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成. 2.引导分析: 1)反函数也是函数; 2)对应法则为互逆运算; 3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数; 4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域; 5)函数y=f(x)与x=f(y)互为反函数; 6)要理解好符号f; 7)交换变量x、y的原因. 3.两次转换x、y的对应关系 (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的) 4.函数与其反函数的关系 函数y=f(x) 函数 定义域 A C 值 域 C A 四、应用解题,总结步骤 1.(投影例题) 【例1】求下列函数的反函数 (1)y=3x-1 (2)y=x 1 【例2】求函数的反函数. (教师板书例题过程后,由学生总结求反函数步骤.) 2.总结求函数反函数的步骤: 1° 由y=f(x)反解出x=f(y). 2° 把x=f(y)中 x与y互换得. 3° 写出反函数的定义域. (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数? (2)的反函数是________. (3)(x<0)的反函数是__________. 在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握. 通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解. 通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力. 题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正. 五、巩固强化,评价反馈 1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x) (1)y=-2x 3(xR) (2)y=-(xR,且x) ( 3 ) y=(xR,且x) 2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值. 五、反思小结,再度设疑 本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究. (让学生谈一下本节课的学习体会,教师适时点拨) 进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂. 六、作业 习题2.4第1题,第2题 进一步巩固所学的知识. 教学设计说明 "问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念. 反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。 内容分析: 1、 集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。 这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念。 集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。 教学过程: 一、复习引入: 1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2.教材中的章头引言; 3.集合论的创始人——康托尔(德国数学家)(见附录); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4)。 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…} (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…} (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…} (4)有理数集:全体有理数的集合,记作Q,Q={整数与分数} (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数} 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的.集,记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写。 1.课题 填写课题名称(高中代数类课题) 2.教学目标 (1)知识与技能: 通过本节课的学习,掌握......知识,提高学生解决实际问题的能力; (2)过程与方法: 通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力; (3)情感态度与价值观: 通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。 3.教学重难点 (1)教学重点:本节课的知识重点 (2)教学难点:易错点、难以理解的知识点 4.教学方法(一般从中选择3个就可以了) (1)讨论法 (2)情景教学法 (3)问答法 (4)发现法 (5)讲授法 5.教学过程 (1)导入 简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题) (2)新授课程(一般分为三个小步骤) ①简单讲解本节课基础知识点(例:奇函数的定义)。 ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。 ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。 (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。) (3)课堂小结 教师提问,学生回答本节课的收获。 (4)作业提高 布置作业(尽量与实际生活相联系,有所创新)。 6.教学板书 2.高中数学教案格式 一.课题(说明本课名称) 二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务) 三.课型(说明属新授课,还是复习课) 四.课时(说明属第几课时) 五.教学重点(说明本课所必须解决的关键性问题) 六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点) 七.教学方法要根据学生实际,注重引导自学,注重启发思维 八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤) 九.作业处理(说明如何布置书面或口头作业) 十.板书设计(说明上课时准备写在黑板上的内容) 十一.教具(或称教具准备,说明辅助教学手段使用的工具) 十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法) 3.高中数学教案范文 【教学目标】 1.知识与技能 (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列: (2)账务等差数列的通项公式及其推导过程: (3)会应用等差数列通项公式解决简单问题。 2.过程与方法 在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。 3.情感、态度与价值观 通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。 【教学重点】 ①等差数列的概念; ②等差数列的通项公式 【教学难点】 ①理解等差数列“等差”的特点及通项公式的含义; ②等差数列的通项公式的推导过程. 【学情分析】 我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 【设计思路】 1、教法 ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性. ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性. ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点. 2、学法 引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法. 【教学过程】 一、创设情境,引入新课 1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么? 2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列? 3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列? 教师:以上三个问题中的数蕴涵着三列数. 学生: ①0,5,10,15,20,25,…. ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力. 二、观察归纳,形成定义 ①0,5,10,15,20,25,…. ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. 思考1上述数列有什么共同特点? 思考2根据上数列的共同特点,你能给出等差数列的一般定义吗? 思考3你能将上述的文字语言转换成数学符号语言吗? 教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念. 学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定. 教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义. (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.) 三、举一反三,巩固定义 1、判定下列数列是否为等差数列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题. 注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0. (设计意图:强化学生对等差数列“等差”特征的理解和应用). 2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么? (设计意图:强化等差数列的.证明定义法) 四、利用定义,导出通项 1、已知等差数列:8,5,2,…,求第200项? 2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢? 教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法. (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力) 五、应用通项,解决问题 1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项? 2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an. 3、求等差数列3,7,11,…的第4项和第10项 教师:给出问题,让学生自己操练,教师巡视学生答题情况. 学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式 (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.) 六、反馈练习:教材13页练习1 七、归纳总结: 1、一个定义: 等差数列的定义及定义表达式 2、一个公式: 等差数列的通项公式 3、二个应用: 定义和通项公式的应用 教师:让学生思考整理,找几个代表发言,最后教师给出补充 (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.) 【设计反思】 本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率. 【课题名称】 《等差数列》的导入 【授课年级】 高中二年级 【教学重点】 理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。 【教学难点】 等差数列的性质、等差数列“等差”特点的理解, 【教具准备】多媒体课件、投影仪 【三维目标】 ㈠知识目标: 了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列; ㈡能力目标: 通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力; ㈢情感目标: 通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。 【教学过程】 导入新课 师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的.例子: (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,() (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少? (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少? (4)10072,10144,10216,(),10360 请同学们回答以上的四个问题 生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。 师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。 生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68. 师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。 生1:相邻的两项的差都等于同一个常数。 师:很好!那作差是否有顺序?是否可以颠倒? 生2:作差的顺序是后项减去前项,不能颠倒! 师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。 推进新课 等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。 师:有哪个同学知道定义中的关键字是什么? 生2:“从第二项起”和“同一个常数” 教学目标: 1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进 学生全面认识数学的科学价值、应用价值和文化价值。 2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。 教学重点: 如何建立实际问题的目标函数是教学的重点与难点。 教学过程: 一、问题情境 问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大? 问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小? 问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省? 二、新课引入 导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。 1。几何方面的应用(面积和体积等的最值)。 2。物理方面的应用(功和功率等最值)。 3。经济学方面的应用(利润方面最值)。 三、知识建构 例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 说明1解应用题一般有四个要点步骤:设——列——解——答。 说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极 值及端点值比较即可。 例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才 能使所用的材料最省? 变式当圆柱形金属饮料罐的`表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 说明1这种在定义域内仅有一个极值的函数称单峰函数。 说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为: S1列:列出函数关系式。 S2求:求函数的导数。 S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。 例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为 多大时,才能使电功率最大?最大电功率是多少? 说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。 例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。 例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。 (1)设,生产多少单位产品时,边际成本最低? (2)设,产品的单价,怎样的定价可使利润最大? 四、课堂练习 1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。 2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。 3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少? 4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。 五、回顾反思 (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。 (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。 (3)相当多有关最值的实际问题用导数方法解决较简单。 六、课外作业 课本第38页第1,2,3,4题。 教学目标: 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力. 教学重点: 比较法的应用 教学难点: 常见解题技巧 教学方法启发引导式 教学活动 (一)导入新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,教师点评. (学生活动)思考问题,回答. [字幕]1.比较法证明不等式的步骤是怎样的? 2.比较法证明不等式的步骤中,依据、手段、目的各是什么? 3.用比较法证明不等式的步骤中,最关键的是哪一步?学了哪些常用的变形方法?对式子的变形还有其它方法吗? [点评]用比较法证明不等式步骤中,关键是对差式的变形.在我们所学的知识中,对式子变形的常用方法除了配方、通分,还有因式分解.这节课我们将继续学习比较法证明不等式,积累对差式变形的常用方法和比较法思想的应用.(板书课题) 设计意图:复习巩固已学知识,衔接新知识,引入本节课学习的内容. (二)新课讲授 【尝试探索,建立新知】 (教师活动)提出问题,引导学生研究解决问题,并点评. (学生活动)尝试解决问题. [问题] 1.化简 2.比较与()的大小. (学生解答问题) [点评] ①问题1,我们采用了因式分解的方法进行简化. ②通过学习比较法证明不等式,我们不难发现,比较法的思想方法还可用来比较两个式子的大小. 设计意图:启发学生研究问题,建立新知,形成新的知识体系. 【例题示范,学会应用】 (教师活动)教师打出字幕(例题),引导、启发学生研究问题,井点评解题过程. (学生活动)分析,研究问题. [字幕]例题3已知 a , b 是正数,且,求证 [分析]依题目特点,作差后重新组项,采用因式分解来变形. 证明:(见课本) [点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范. [点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学 思想方法.要理解为什么分类,怎样分类.分类时要不重不漏. [字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点. [分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,要回答题目中的问题,只要比较、的`大小就可以了. 解:(见课本) [点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质. 设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力. 【课堂练习】 (教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题. (学生活动)在笔记本上完成练习,甲、乙两位同学板演. [字幕]练习:1.设,比较与的大小. 2.已知,求证 设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学. 【分析归纳、小结解法】 (教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤. (学生活动)与教师一道小结,并记录在笔记本上. 1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法. 2.对差式变形的常用方法有:配方法,通分法,因式分解法等. 3.会用分类讨论的方法确定差式的符号. 4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答. 设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系. (三)小结 (教师活动)教师小结本节课所学的知识及数学 思想与方法. (学生活动)与教师一道小结,并记录笔记. 本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的思想解决实际问题. 通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力. 设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学 思想方法. (四)布置作业 1.课本作业:P17 7、8。 2,思考题:已知,求证 3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变) 设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力. (五)课后点评 1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动. 2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用 【高中数学教案】相关文章: 高中数学教案12-29 高中数学教案07-11 高中数学教案07-20 高中数学教案【推荐】01-25 高中数学教案【精】01-25 高中数学教案【热】01-27 【荐】高中数学教案01-29 【热】高中数学教案01-29 【精】高中数学教案02-04 高中数学教案【热门】02-04高中数学教案5
高中数学教案6
高中数学教案7
高中数学教案8
高中数学教案9
高中数学教案10
高中数学教案11
高中数学教案12
高中数学教案13
高中数学教案14
高中数学教案15
高中数学教案16
高中数学教案17
高中数学教案18
高中数学教案19
高中数学教案20