初三数学二次函数的图象和性质教案

时间:2021-12-06 14:30:50 教案 我要投稿

初三数学二次函数的图象和性质教案

  作为一名老师,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?下面是小编为大家收集的初三数学二次函数的图象和性质教案,仅供参考,希望能够帮助到大家。

初三数学二次函数的图象和性质教案

  教学目标:

  1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

  2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

  3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

  教学重点:二次函数y=ax2的图象的作法和性质

  教学难点:建立二次函数表达式与图象之间的联系

  教学方法:自主探索,数形结合

  教学建议:

  利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

  教学过程:

  一、认知准备:

  1.正比例函数、一次函数、反比例函数的图象分别是什么?

  2.画函数图象的方法和步骤是什么?(学生口答)

  你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

  二、新授:

  (一)动手实践:作二次函数y=x2和y=-x2的图象

  (同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

  (二)对照黑板图象议一议:(先由学生独立思考,再小组交流)

  1.你能描述该图象的形状吗?

  2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

  3.当x<0时,随着x的增大,y如何变化?当x>0时呢?

  4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

  5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

  (三)学生交流:

  1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

  2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

  3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:

  (1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

  (2)两个图象关于哪个点对称?

  (3)由y=x2的图象如何得到y=-x2的图象?

  (四)动手做一做:

  1.作出函数y=2 x2和y= -2 x2的图象

  (同桌二人,南边作二次函数y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)

  2.对照黑板图象,数形结合,研讨性质:

  (1)你能说出二次函数y=2 x2具有哪些性质吗?

  (2)你能说出二次函数y= -2 x2具有哪些性质吗?

  (3)你能发现二次函数y=a x2的图象有什么性质吗?

  (学生分小组活动,交流各自的发现)

  3.师生归纳总结二次函数y=a x2的图象及性质:

  (1)二次函数y=a x2的图象是一条抛物线

  (2)性质

  a:开口方向:a>0,抛物线开口向上,a〈 0,抛物线开口向下[

  b:顶点坐标是(0,0)

  c:对称轴是y轴

  d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

  e:增减性:a>0时,在对称轴的左侧(X<0),y随x的`增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

  4.应用:(1)说出二次函数y=1/3 x2和y= -5 x2有哪些性质

  (2)说出二次函数y=4 x2和y= -1/4 x2有哪些相同点和不同点?

  三、小结:

  通过本节课学习,你有哪些收获?(学生小结)

  1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线

  2.知道二次函数y=a x2的性质:

  a:开口方向:a>0,抛物线开口向上,a〈0,抛物线开口向下

  b:顶点坐标是(0,0)

  c:对称轴是y轴

  d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

  e:增减性:a>0时,在对称轴的左侧(X<0=,y随x的增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

【初三数学二次函数的图象和性质教案】相关文章:

1.函数的图象数学教案

2.数学教案-函数的图象

3.反比例函数及其图象说课稿

4.一次函数图象的应用说课稿

5.二次函数超级经典课件教案

6.余弦函数的性质说课稿

7.初中数学二次函数教学反思

8.数学二次函数复习资料

9.波动图象与振动图象的综合应用练习题