精选因式分解教案(通用10篇)
作为一名教学工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?下面是小编为大家整理的因式分解教案,希望能够帮助到大家。
因式分解教案 篇1
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2 (a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习,计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1) ,一课一练
(九)教学反思:
因式分解教案 篇2
教学目标:
1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。
教学重点:整式加减的运算。
教学难点:探索规律的猜想。
教学方法:尝试练习法,讨论法,归纳法。
教学用具:投影仪
教学过程:
I探索练习:
摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。
(1)摆第10个这样的“小屋子”需要 枚棋子
(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
二、例题讲解:
三、巩固练习:
1、计算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么
(1)第一个角是多少度?
(2)其他两个角各是多少度?
四、提高练习:
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?
2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且B-2A=a,求A的值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本P14习题1.3:1(2)、(3)、(6),2。
因式分解教案 篇3
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
因式分解教案 篇4
学习目标
1、了解因式分解的意义以及它与正式乘法的关系。
2、能确定多项式各项的公因式,会用提公因式法分解因式。
学习重点:能用提公因式法分解因式。
学习难点:确定因式的公因式。
学习关键,在确定多项式各项公因式时,应抓住各项的公因式来提公因式。
学习过程
一.知识回顾
1、计算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主学习
1、阅读课文P72-73的内容,并回答问题:
(1)知识点一:把一个多项式化为几个整式的__________的形式叫做____________,也叫做把这个多项式__________。
(2)、知识点二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我们来分析一下多项式ma+mb+mc的特点;它的每一项都含有一个相同的因式m,m叫做各项的_________。如果把这个_________提到括号外面,这样
ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc=m(a+b+c)。这种________的方法叫做________。
2、练一练。P73练习第1题。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一种变形,左边是几个整式乘积形式,右边是一个多项式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一种变形,左边是_____________,右边是_____________。
3、下列是由左到右的变形,哪些属于整式乘法,哪些属于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、准确地确定公因式时提公因式法分解因式的关键,确定公因式可分两步进行:
(1)确定公因式的数字因数,当各项系数都是整数时,他们的最大公约数就是公因式的数字因数。
例如:8a2b-72abc公因式的数字因数为8。
(2)确定公因式的字母及其指数,公因式的字母应是多项式各项都含有的字母,其指数取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(________)
(2)-4a2b+8ab-4b分解因式为__________________
(3)分解因式4x2+12x3+4x=__________________
(4)__________________=-2a(a-2b+3c)
2、P73练习第2题和第3题
五、达标测试。
1、下列各式从左到右的变形中,哪些是整式乘法?哪些是因式分解?哪些两者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.课本P77习题8.5第1题
学习反思
因式分解教案 篇5
一、教学目标
【知识与技能】
了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。
【过程与方法】
通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。
【情感态度价值观】
在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。
二、教学重难点
【教学重点】
运用平方差公式分解因式。
【教学难点】
灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。
三、教学过程
(一)引入新课
我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?
大家先观察下列式子:
(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=
他们有什么共同的特点?你可以得出什么结论?
(二)探索新知
学生独立思考或者与同桌讨论。
引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。
提问1:能否用语言以及数学公式将其特征表述出来?
因式分解教案 篇6
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解
4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:
灵活运用因式分解解决问题
教学难点:
灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.
分解因式要注意以下几点:(1).分解的对象必须是多项式.
(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的`地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例题讲解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)22、8a2b2-2a4b-8b3
三、知识应用
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除吗?还能被哪些整数整除?
四、拓展应用
1.计算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+2004被2005整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.
五、课堂小结:今天你对因式分解又有哪些新的认识?
因式分解教案 篇7
一、背景介绍
因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。
二、教学设计
【教学内容分析】
因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。
【教学目标】
1、认知目标:(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学准备】
实物投影仪、多媒体辅助教学。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
【初一年级学生活波好动,好表现,争强好胜。情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。】
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“与其拉马喝水,不如让它口渴”。探索最佳解题方法的过程,就是学生“口渴”的地方。由此引起学生的求知欲。】
2、观察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。】
板书课题:§6.1因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。)
【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。】
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。(多媒体展示学生得出的成果)
㈣、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。】
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。】
㈤、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习,计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。】
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
教科书第153的作业题。
【设计思想】
叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。
因式分解教案 篇8
教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.
教学重点和难点:
1.平方差公式;
2.完全平方公式;
3.灵活运用3种方法.
教学过程:
一、提出问题,得到新知
观察下列多项式:x24和y225
学生思考,教师总结:
(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.
二、运用公式
例1:填空
①4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多项式能否用平方差公式进行因式分解
①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
②4a2+625b2不能用
③16x549y4不能用
④4x236y2不能用
因式分解教案 篇9
一、教学目标
(一)、知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)、过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)= ;
(2)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根据上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
(3)2-16= ;
(4)a3-a= ;
(5)2-6+9= 。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?
因式分解教案 篇10
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
【因式分解教案】相关文章:
因式分解教案04-07
因式分解教案05-26
因式分解的方法教案03-30
因式分解复习教案03-29
因式分解的方法教案08-25
因式分解复习教案09-06
数学因式分解教案09-07
乘除与因式分解(教案)09-09
因式分解教案五篇03-15