【精品】可能性教案四篇
作为一名教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。那要怎么写好教案呢?以下是小编精心整理的可能性教案4篇,欢迎大家分享。
可能性教案 篇1
教学目标:
1、学生能够预测简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、使学生能够对一些问题简单事件发生的可能性作出描述。
3、培养学生分析问题,解决问题的能力。
4、思想教育:在引导学生探索新知的过程中,培养学生合作学习的意识以及养成良好的学习习惯。
教学重、难点:
1、使学生能够预测简单试验所有可能发生的结果,知道事件发可能性是有大小的。
2、能够对一些简单事件发生的可能性作出描述。
教具准备:
硬币、红球、黄球若干、空袋子
教学过程:
一、创设情景,激发兴趣
师:同学们猜猜看,老师手里握着什么?(学生猜一猜)
师伸手出示一枚硬币。请大家再猜猜看,老师把硬币向上抛起,落下时会正面向上呢,还是反面向上?(学生猜一猜)看来,生活中存在着非常多的可能性。(板书课题)可能性已经是我们的老朋友了。下面,我们和这位老朋友一起来做一个小游戏
二、男女生摸球比赛
1、游戏规则:选出的男女队员各2名分别从盒子里摸出一个球,各摸十次,摸到黄球可以加一分,摸到红球不加分
为男生准备的盒子:9个红球1个黄球。
为女生准备的盒子:1个红球9个黄球。
2、比赛开始(现在男女队员已经摸完球了,咱们来统计一下两队摸球的情况,老师记录。
3、仔细观察统计结果,你发现了什么?总结:女队获胜。
4、男生交流失败的原因。
5、得出结论:可能性有大有小。(板书)
师:为什么女生摸出黄球的可能性大?男生摸出黄球的可能性小?什么原因造成的?
(板书:数量 多 少)
集体交流:数量多的,可能性就大;数量少的, 可能性就小。
6、师:那这样的比赛公平吗?男同学服气吗?那我们再来一次公平的比赛。(两个盒子装上同样多的黄球和红球,再来一次)
比赛之前,大家预测一下,这次谁获胜的可能性大一些?(学生猜一猜,到底会怎样呢?我们来一起验证一下)
(渗透 数量相等时 可能性一样大)
可能性教案 篇2
【教学目标】
1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。
2.了解事件发生的可能性大小是由发生事件的条件来决定的。
3.会在简单情景下比较事件发生的可能性大小。
4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
【教学重点、难点】
教学重点:认识事件发生可能性大小的意义。
教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小
【教学过程】
一、 创设情境引入新知
提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?
为了解决这个问题,可先让学生分小组进行摸球游戏:
1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。
2、做20次这样的活动,将最终结果填在表中。
3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?
4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?
游戏的结论:
在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。
一般地,不确定事件发生的可能性是有大小的。
说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。
二、观察思考 理解新知
请考虑下面问题:
(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?
分析:根据本人的实际棋艺水平来确定,答案不唯一。
(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?
分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。
(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?
分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。
(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?
分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。
从上可得出以下结论:
①事件发生的可能性大小是由发生事件的条件来决定的。
②可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
三、师生互动运用新知
例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。
完成P76 1,2的做一做
例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.
分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:
(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;
(2)将上述结果列表或画树状图;
(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;
(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。
完成课内练习1,2
四、梳理知识 形成结构
通过本节课的学习,谈谈你的收获?
在交流中,师生可共同梳理知识点:
(1)事件发生的可能性大小是由发生事件的条件来决定的。
(2)可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
五、应用新知 体验成功
1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?
答案: 2的倍数可能性哪个大。
2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?
答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。
3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。
答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。
4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?
答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。
5、如图是小明家地板的部分示意图,它由大小相同的'黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?
讲故事 5张
唱 歌 3张
跳 舞 1张
答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。
6、联欢会上小红可能抽到什么节目?
抽到什么节目的可能性最大?抽到什么节目的 可能性最小?
答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。
7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?
答案:
朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。
一次正面朝上,另一次正朝面下发生的可能性大。
六、布置作业巩固新知
作业题:1 — 4必做5、6选做。
可能性教案 篇3
教学目标:
1、通过“猜测—实践—验证”,让学生经历事件发生的可能性大、小的探索过程,感受某些事件发生的可能性是不确定的,理解并掌握事件发生的可能性的大小规律。
2、能对一些事件发生的可能性大小进行描述,结合具体情境,能对某些事件进行推理,知道其结果可能性的大小。
3、获得一些初步为数学实践活动经验,并在和同伴的合作与交流的过程中培养学生的合作学习的意识和能力。
教学重点:
感受某些事件发生的可能性大、小,理解并掌握事件发生的可能性的大小规律。
教学难点:
通过动手操作,分析推理,得出事件发生的可能性的大小规律。
教学过程:
一、游戏激趣,谈话引入(飞镖)
1、引出“可能”
今天老师要请大家一起玩个游戏,你们喜欢吗?(出示转盘)
请两个学生上来比赛,猜猜谁会赢?
教师小结:刚才这两位同学在没有比赛之前,我们是不能确定他们的输赢情况,在这种不确定的情况下,可以用“可能”来描述。(板书:可能—不确定)
现在谁能用可能一次来说说他们两个的输赢情况。(XX可能会赢,XX可能会输,从不同角度说说)
2、引出“不可能”、一定
比赛开始,规则每人投5次,等到第一位同学投完第5次,随机再让学生猜猜他们的输赢情况,并说说理由。从而引出“一定”、“不可能”
(板书:(一定--确定)
(不可能--确定)
3、小结:刚才我们所讲到的“可能、不可能、一定”它是判断一件事情会不会发生的三种情况。其实像这样的例子在我们生活中还有许多,有些事情它可能发生,有些事情它不可能发生,而有些事情则一定发生,下面的事情请你用“可能、不可能、一定”来说一说。
4、练习(课件出示)
(1)小红说:“出生到现在我没有吃过一点东西。”
(2)太阳从西边出来。
(3)吃饭时,有人用左手拿筷子。
(4)世界上每天都有人出生。
5、教师说学生用手势进行判断。
(1)两个因数相乘,积是两位数。
(2)三位数除以两位数的商是两位数。
(3)一个人身高10米。
(4)角有一个顶点两条边。
二、操作活动探索规律
1、出示活动要求
(1)每人摸3次,摸的时候要按顺序,不能抢。
(2)摸之前将棋子摇一摇,任意摸出一个,小组长记录是什么颜色,然后把棋放回袋子再摸。
(3)小组长统计一共摸了几次,白棋几次,黑棋几次。
2、小组活动,教师巡视指导
2、汇报摸球情况
请各组的组长汇报你们组的摸球情况。(师将学生的摸球的情况统计在记录表中)仔细地观察这个表格,你发现了什么?
3、猜猜袋子里装有什么颜色的棋子,以及两种棋子数量的多少。
4、验证猜测结果
5、师小结:通过再一次的实验证明,可能性的大小与什么有关?(数量)数量
多的可能性就大,数量少可能性就少。那么两者的数量相等或差不多时,它们的
可能性就差不多了。
三、生活应用
我们掌握了可能性大小的规律,利用它可以解决生活中的很多问题。
1、现在我们再来玩玩这个飞镖游戏吧(请两位学生上来)
(1)猜猜他们两个投在那个地方的可能性大一些
(2)学生投了几次之后,猜猜谁赢的可能性大一些(随机察看情况)
2、定分
老师这儿有一个没有定分的飞镖,请你运用今天所学的知识,你觉得如何定分最合理?
3、摸奖
瞧,元旦马上到了,一百商店举行摸奖活动,规定凡是摸到白球均可获得价值100元的精美礼品。你会选择那一只摸奖工具箱。(说说你的理由)
可能性教案 篇4
教学内容:
人教版小学数学教材五年级上册第44页主题图、例1、第45页“做一做”及相关练习,第49页“生活中的数学”。
教学目标:
1、初步体验事件发生的确定性和不确定性,能列出简单的随机现象中所有可能发生的结果。能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
2、借助猜测、实验、交流等活动,培养学生的逻辑思维能力和口头表达能力。
3、通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。
教学重点:
通过活动,使学生体验事件发生的确定性与不确定性。
教学难点:
使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。
教学准备:
课件、节目卡片、抽奖盒。
教学过程:
一、游戏导入,激活经验
(一)游戏1:猜猜硬币在哪只手里。
1、教师将枚硬币握在手中,并在背后交换位置,让学生猜一猜硬币在哪只手里。说一说你能确定吗?
2、教师打开没有硬币的手,再让学生猜一猜硬币在哪只手里。说一说你能确定吗?为什么?
(二)游戏2:猜猜抛出的硬币是正面朝上还是反面朝上。
1、教师将这枚硬币抛出,让学生说出可能是哪个面朝上,要求说出所有可能。
2、让学生猜一猜是哪个面朝上。
3、教师揭示结果。
(三)揭示课题。在生活中有些事件的发生是确定的,有些是不确定的。今天我们一起来探究事件发生的可能性。
【设计意图】通过游戏激活学生的生活经验,初步感知事件发生的确定性和不确定性,为学生进一步探究奠定坚实的基础。
【【精品】可能性教案四篇】相关文章:
【精品】可能性教案四篇03-17
【必备】可能性教案四篇03-11
精选可能性教案三篇03-09
可能性教学反思【优秀】12-25
可能性的教学反思12-26
可能性说课稿15篇11-07
可能性数学课件设计05-08
《可能性》教学设计15篇03-16
《翠鸟》精品教案03-16