三角形盒教案
在教学工作者开展教学活动前,时常要开展教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的三角形盒教案,希望能够帮助到大家。
三角形盒教案1
课程分析:
图形在孩子们的生活中随处可见,大班的孩子已能用常见的几何形体有创意的拼搭和画出物体的造型,《贪心的三角形》是偶然间给孩子们讲的一个绘本故事,我发现孩子们对这些图形非常感兴趣,于是我抓住了他们的这个兴趣点,设计了本次活动。它借助了一个“三角形增加边增加角”的这个故事为线索导入,环环相扣,从而实现本节课的教学目标。
课程目标:
为了满足孩子们强烈的好奇心和求知欲,通过听听、看看、猜猜、玩玩等不同途径,帮助幼儿进一步感知并掌握有关平面图形的基本特征,充分调动幼儿的各种感官,满足幼儿探索、发现、尝试创作的欲望,故设计本节教学活动的目标如下:
1.联系自身的生活经验感受三角形的特点。
2.在三角形的基础上,增加边增加角变成四边形、五边形。
3.感受认识图形的乐趣,积极思考,乐于参与。
课程准备:
物质准备:ppt,彩条、魔法棒、图形统计表、记号笔若干。
经验准备:事先幼儿知道什么是边、什么是角。
课程过程:
一、游戏导入;认识三角形
1、师:今天老师带来了一只奇妙的箱子?(出示奇妙箱)你们知道里面藏着什么秘密吗?
2、教师念儿歌:奇妙口袋东西多,让我先来摸摸,摸出看看是什么?
3、介绍三角形。
二、游戏巩固:
1、游戏:找一找
师出示背景图,请幼儿联系生活经验,交流讨论说出三角形物品。
2、互动游戏:教师讲述找寻人身体可以出现的三角形。
师:那我们来和三角形做个游戏吧!利用我们的身体可以怎么摆出三角形呢?
二、讲述故事《贪心的三角形》
在认识三角形的基础上增加边增加角变成四边形、五边形。
1.认识四边形
(1)三角形变四边形。
(2)出示各种四边形,请幼儿集体说出他们的名称。
师:白板阿姨给我们带来了好多的四边形,你们认识他们吗?
(3)寻找四边形。
2.认识五边形
(1)四边形变五边形。
(2)寻找生活中的五边形。
师:新生活太奇妙了,五边形又出现在我们生活中的哪里呢?
三、操作、记录(提供图形统计表)
1.请幼儿扮演小小图形转换官,用彩条把拼的图形贴在卡纸上,并将拼的图形有几条边和几个角在统计表上记录下来。
2.师幼交流评价作品。
四、游戏开火车结束活动。
课程反思:
针对本次活动我觉得值得反思的地方是:对于活动中个别活动积极性不高的幼儿引导还不够,没能让他们大胆的交往,融入游戏及教学活动中,应多关注个别差异的幼儿。其次中间的数学操作,师幼交流评价作品环节,没有很好的让幼儿参与到评价中来,只肯定了表现好的幼儿,没有针对存在的突出现象,如:个别幼儿没有操作正确,没有进一步探讨其背后的原因,并商量解决的办法。
三角形盒教案2
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中ab与cd的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的'延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
三角形盒教案3
设计意图:
小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。
活动目标:
1.能说出三角形的名称,感知三角形的主要特征。
2.能从周围的环境中找出与三角形相似的物体。
活动准备:
物质准备:正方形、三角形每人各一张。
活动过程:
一、复习正方形,引出三角形,并利用蒙层功能激发幼儿的兴趣。幼儿自主探究如何将正方形变成三角形。
教师:小朋友可以自由选择操作材料,试一试用正方形如何变成一个三角形?
幼儿操作、讨论、分享发现。
小结:通过操作,我们发现对折正方形的对角线就可以变成三角形。
二、分组操作,幼儿尝试用喜欢的标志把自己发现的三角形记录下来。
过渡语:刚才我们一起用一个正方形对折变成了三角形,那这个三角形有几条边?几个角呢?请小朋友自由选择操作材料,并用自己喜欢的标志记录你的发现。
小结:三角形都有3条边和3个角。
三、通过希沃白板以游戏的方式,复习和巩固对三角形的认识。
游戏一:通过七巧板拼成的图片,让幼儿找出图片中藏起来的三角形宝宝。
引导语:请小朋友小眼睛认真观察并找出下面图片中藏着的三角形宝宝。
游戏二:通过蒙层擦除,让幼儿分别辨别三角形,最后出示完整小动物。
游戏三:帮助三角形找家。
游戏四:比比谁能够快速的找到三角形宝宝
引导语:大家说说日常生活中我们看见过哪些像三角形的东西?
引导幼儿观察、找出三角形的特征。
游戏五:在各种图形中找出三角形。
教师:请找出图片中的三角形,并把它放到三角形的家里。
活动延伸:
到幼儿园、家里再找一找三角形宝宝。
三角形盒教案4
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
?教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
设计意图:也自然导入新课。
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:
(1)三角形的内角指的是哪些角?
(2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
?设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:
①量算法
②剪拼法
③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:
标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
三角形盒教案5
教材与学情:
解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。
信息论原理:
将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。
教学目标:
⒈认知目标:
⑴懂得常见名词(如仰角、俯角)的意义
⑵能正确理解题意,将实际问题转化为数学
⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。
⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。
⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。
教学重点、难点:
重点:利用解直角三角形来解决一些实际问题
难点:正确理解题意,将实际问题转化为数学问题。
信息优化策略:
⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态
⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。
⑶重视学法指导,以加速教学效绩信息的顺利体现。
教学媒体:
投影仪、教具(一个锐角三角形,可变换图2-图7)
高潮设计:
1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性
2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识
教学过程:
一、复习引入,输入并贮存信息:
1.提问:如图,在rt△abc中,∠c=90°。
⑴三边a、b、c有什么关系?
⑵两锐角∠a、∠b有怎样的关系?
⑶边与角之间有怎样的关系?
2.提问:解直角三角形应具备怎样的条件:
注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息
二、实例讲解,处理信息:
例1.(投影)在水平线上一点c,测得同顶的仰角为30°,向山沿直线 前进20为到d处,再测山顶a的仰角为60°,求山高ab。
⑴引导学生将实际问题转化为数学问题。
⑵分析:求ab可以解rt△abd和
rt△abc,但两三角形中都不具备直接条件,但由于∠adb=2∠c,很容易发现ad=cd=20米,故可以解rt△abd,求得ab。
⑶解题过程,学生练习。
⑷思考:假如∠adb=45°,能否直接来解一个三角形呢?请看例2。
例2.(投影)在水平线上一点c,测得山顶a的仰角为30°,向山沿直线前进20米到d处,再测山顶a的仰角为45°,求山高ab。
分析:
⑴在rt△abc和rt△abd中,都没有两个已知元素,故不能直接解一个三角形来求出ab。
⑵考虑到ab是两直角三角形的直角边,而cd是两直角三角形的直角边,而cd均不是两个直角三角形的直角边,但cd=bc=bd,启以学生设ab=x,通过 列方程来解,然后板书解题过程。
解:设山高ab=x米
在rt△adb中,∠b=90°∠adb=45°
∵bd=ab=x(米)
在rt△abc中,tgc=ab/bc
∴bc=ab/tgc=√3(米)
∵cd=bc-bd
∴√3x-x=20 解得 x=(10√3+10)米
答:山高ab是(10√3+10)米
三、归纳总结,优化信息
例2的图开完全一样,如图,均已知∠1、∠2及cd,例1中 ∠2=2∠1 求ab,则需解rt△abd例2中∠2≠2∠1求ab,则利用cd=bc-bd,列方程来解。
四、变式训练,强化信息
(投影)练习1:如图,山上有铁塔cd为m米,从地上一点测得塔顶c的仰角为∝,塔底d的仰角为β,求山高bd。
练习2:如图,海岸上有a、b两点相距120米,由a、b两点观测海上一保轮船c,得∠cab=60°∠cba=75°,求轮船c到海岸ab的距离。
练习3:在塔pq的正西方向a点测得顶端p的
仰角为30°,在塔的正南方向b点处,测得顶端p的仰角为45°且ab=60米,求塔高pq。
教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:
⑴将基本图形4旋转90°,即得图5;将基本图形4中的rt△abd翻折180°,即可得图6;将基本图形4中rt△abd绕ab旋转90°,即可得图7的立体图形。
⑵引导学生归纳三个练习题的等量关系:
练习1的等量关系是ab=ab;练习2的等量关系是ad+bd=ab;练习3的等量关系是aq2+bq2=ab2
五、作业布置,反馈信息
几何》第三册p57第10题,p58第4题。
板书设计:
解直角三角形的应用
例1已知:………例2已知:………小结:………
求:………求:………
解:………解:………
练习1已知:………练习2已知:………练习3已知:………
求:………求:………求:………
解:………解:………解:………
【三角形盒教案】相关文章:
变音盒的教案02-14
三角形礼品盒折法图解04-05
魔术盒社会教案07-08
杂物盒小班区域活动教案07-06
家乡的酒盒教案设计06-23
小班教案好吃的水果沙拉盒03-19
花仙子的音乐盒教案03-23
《亲亲妈妈爱心盒》教案08-25
大班美术教案:文具盒08-23