八年级数学教案

时间:2022-12-28 09:21:46 教案 我要投稿
  • 相关推荐

八年级数学教案集锦15篇

  作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?下面是小编为大家收集的八年级数学教案,希望对大家有所帮助。

八年级数学教案集锦15篇

八年级数学教案1

  一、教材分析教材的地位和作用:

  本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

  二、学情分析

  八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

  三、教学目标及重点、难点的确定

  根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

  (一)教学目标:

  1、知识技能

  (1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

  (2)理解并掌握轴对称的概念,对称轴;了解对称点.

  (3)了解轴对称图形和轴对称的联系与区别.

  2、过程与方法目标

  经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

  3、情感、态度与价值观

  通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

  (二)教学重点:轴对称图形和轴对称的有关概念.

  (三)教学难点:轴对称图形与轴对称的联系、区别

  .四、教法和学法设计

  本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

  【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

  【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

  【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

  五、说程序设计:

  新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

  (一)、观图激趣、设疑导入。

  出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

  [设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

  (二)、实践探索、感悟特征.

  《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

  为了进一步认识轴对称图形的特点又出示了一组练习

  (练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

  [设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

  (练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

  (三)、动手操作、再度探索新知。

  将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

  再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

  (四)、巩固练习、升华新知。

  出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

  在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

  (课件演示)轴对称图形及两个图形成轴对称区别与联系

  (五)、综合练习、发展思维。

  1、抢答;观察周围哪些事物的形状是轴对称图形。

  2、判断:

  生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

  (1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

  0123456789ABCDEFGH

  3、像这样写法的汉字哪些是轴对称图形?

  口工用中由日直水清甲

  (这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

  (六)归纳小结、布置作业

  [设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

  六、设计说明

  这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

八年级数学教案2

  一、内容和内容解析

  1.内容

  三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.

  2.内容解析

  本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。

  理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.

  本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.

  二、目标和目标解析

  1.教学目标

  (1)理解三角形的高、中线与角平分线等概念;

  (2)会用工具画三角形的高、中线与角平分线;

  2.教学目标解析

  (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.

  (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.

  (3)掌握三角形的高、中线与角平分线的画法.

  (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.

  三、教学问题诊断分析

  三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.

  三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.

  三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.

八年级数学教案3

  教学建议

  知识结构

  重难点分析

  本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

  本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

  教法建议

  1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

  2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

  教学设计示例

  一、教学目标

  1.掌握中位线的概念和三角形中位线定理

  2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

  3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

  4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

  5. 通过一题多解,培养学生对数学的兴趣

  二、教学设计

  画图测量,猜想讨论,启发引导.

  三、重点、难点

  1.教学重点:三角形中位线的概论与三角形中位线性质.

  2.教学难点:三角形中位线定理的证明.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具

  六、教学步骤

  【复习提问】

  1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

  2.说明定理的证明思路.

  3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?

  分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.

  4.什么叫三角形中线?(以上复习用投影仪打出)

  【引入新课】

  1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

  (结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

  2.三角形中位线性质

  了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

  如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

  三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

  应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

  由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

  (l)延长DE到F,使 ,连结CF,由 可得AD FC.

  (2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.

  (3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.

  上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .

  (证明过程略)

  例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

  (由学生根据命题,说出已知、求证)

  已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

  求证:四边形EFGH是平行四边形.‘

  分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.

  证明:连结AC.

  ∴ (三角形中位线定理).

  同理,

  ∴GH EF

  ∴四边形EFGH是平行四边形.

  【小结】

  1.三角形中位线及三角形中位线与三角形中线的区别.

  2.三角形中位线定理及证明思路.

  七、布置作业

  教材P188中1(2)、4、7

八年级数学教案4

  教学目标

  理解平行四边形的定义,能根据定义探究平行四边形的性质.

  教学思考

  1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.

  2.能够根据平行四边形的性质进行简单的推理和计算.

  解决问题

  通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.

  情感态度

  在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

  重点

  平行四边形的性质的探究和平行四边形的性质的应用.

  难点

  平行四边形的性质的应用.

  教学流程安排

  活动流程图

  活动内容和目的

  活动1欣赏图片,了解生活中的特殊四边形

  活动2剪三角形纸片,拼凸四边形

  活动3理解平行四边形的概念

  活动4探究平行四边形边、角的性质

  活动5平行四边形性质的应用

  活动6评价反思、布置作业

  熟悉生活中特殊的四边形,导出课题.

  通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.

  掌握平行四边形的定义及表示方法.

  探究平行四边形的性质.

  运用平行四边形的性质.

  学生交流,内化知识,课后巩固知识.

  教学过程设计

  问题与情景

  师生行为

  设计意图

[活动1]

  下面的图片中,有你熟悉的哪些图形?

  (出示图片)

  演示图片,学生欣赏.

  教师介绍四边形与我们生活密切联系,学生可再补充列举.

  从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.

  问题与情景

  师生行为

  设计意图

  [活动2]

  拼一拼

  将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.

  (1)你拼出了怎样的凸四边形?与同伴交流.

  (2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.

  学生经过实验操作,开展独立思考与合作学习.

  教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.

  教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容

八年级数学教案5

  【教学目标】

  知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

  过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

  情感、态度与价值观

  培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

  【教学重难点】

  重点:掌握用提公因式法把多项式分解因式.

  难点:正确地确定多项式的最大公因式.

  关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  【教学过程】

  一、回顾交流,导入新知

  【复习交流】

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

  【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

  二、小组合作,探究方法

  教师提问:多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  三、范例学习,应用所学

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用简便的方法计算:

  0.84×12+12×0.6-0.44×12.

  【教师活动】引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教师活动】在学生完成例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本115页练习第1、2、3题.

  【探研时空】

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

  六、布置作业,专题突破

  课本119页习题14.3第1、4(1)、6题.

八年级数学教案6

  教材分析

  1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

  2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

  学情分析

  1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

  2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

  教学目标

  知识技能:1、理解掌握等腰三角形的性质。

  2、运用等腰三角形的性质进行证明和计算。

  数学思考:1、观察等腰三角形的对称性,发展形象思维。

  2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

  情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

  教学重点和难点

  重点:等腰三角形的性质及应用。

  难点:等腰三角形的性质证明。

八年级数学教案7

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

八年级数学教案8

  一、教学目标:

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

  2、会求一组数据的极差.

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差.

  2、难点:本节课内容较容易接受,不存在难点.

  三、课堂引入:

  下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法.

  经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度.

  这是不是说,两个时段的气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图.

  观察一下,它们有区别吗?说说你观察得到的结果.

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).

  四、例习题分析

  本节课在教材中没有相应的例题,教材P152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

八年级数学教案9

  平方差公式

  学习目标:

  1、能推导平方差公式,并会用几何图形解释公式;

  2、能用平方差公式进行熟练地计算;

  3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

  学习重难点:

  重点:能用平方差公式进行熟练地计算;

  难点:探索平方差公式,并用几何图形解释公式.

  学习过程:

  一、自主探索

  1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

  (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

  2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

  3、你能用自己的语言叙述你的发现吗?

  4、平方差公式的特征:

  (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

  (2)、公式中的a与b可以是数,也可以换成一个代数式。

  二 、试一试

  例1、利用平方差公式计算

  (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

  例2、利用平方差公式计算

  (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

  三、合作交流

  如图,边长为a的大正方形中有一个边长为b的小正方形.

  (1)请表示图中阴影部分的面积.

  (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

  (3)比较(1)(2)的结果,你能验证平方差公式吗?

  四、巩固练习

  1、利用平方差公式计算

  (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

  (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

  2、利用平方差公式计算

  (1)803797 (2)398402

  3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

  A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

  4.下列多项式的乘法中,可以用平方差公式计算的是( )

  A.(a+b)(b+a) B.(-a+b)(a-b)

  C.( a+b)(b- a) D.(a2-b)(b2+a)

  5.下列计算中,错误的有( )

  ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

  ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

  A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

  6.若x2-y2=30,且x-y=-5,则x+y的值是( )

  A.5 B.6 C.-6 D.-5

  7.(-2x+y)(-2x-y)=______.

  8.(-3x2+2y2)(______)=9x4-4y4.

  9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

  10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

  11.利用平方差公式计算:20 19 .

  12.计算:(a+2)(a2+4)(a4+16)(a-2).

  五、学习反思

  我的收获:

  我的疑惑:

  六、当堂测试

  1、下列多项式乘法中能用平方差公式计算的是( ).

  (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

  2、填空:(1)(x2-2)(x2+2)=

  (2)(5x-3y)( )=25x2-9y2

  3、计算:

  (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

  4.利用平方差公式计算

  ①1003997 ②14 15

  七、课外拓展

  下列各式哪些能用平方差公式计算?怎样用?

  1) (a-b+c)(a-b-c)

  2) (a+2b-3)(a-2b+3)

  3) (2x+y-z+5)(2x-y+z+5)

  4) (a-b+c-d)(-a-b-c-d)

  2.2完全平方公式(1)

八年级数学教案10

  教学目标:

  1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

  2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

  3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

  重点与难点:

  重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

  难点:分析典型图案的设计意图。

  疑点:在设计的图案中清晰地表现自己的设计意图

  教具学具准备:

  提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

  教学过程设计:

  1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

  明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

  2、课本

  1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。

  评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

  评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

  (二)课内练习

  (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

  (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

  (三)议一议

  生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

  (四)课时小结

  本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

  通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

  八年级数学上册教案(五)延伸拓展

  进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案11

  学习重点:函数的概念 及确定自变量的取值范围。

  学习难点:认识函数,领会函数的意义。

  【自主复习知识准备】

  请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

  【自主探究知识应用】

  请看书72——74页内容,完成下列问题:

  1、 思考书中第72页的问题,归纳出变量之间的关系。

  2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

  3、 归纳出函数的定义,明确函数定义中必须要满足的条件。

  归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

  补充小结:

  (1)函数的定义:

  (2)必须是一个变化过程;

  (3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。

  三、巩固与拓展:

  例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

  (1)写出表示y与x的'函数关系式.

  (2)指出自变量x的取值范围.

  (3) 汽车行驶200千米时,油箱中还有多少汽油?

  【当堂检测知识升华】

  1、判断下列变量之间是不是函数关系:

  (1)长方形的宽一定时,其长与面积;

  (2)等腰三角形的底边长与面积;

  (3)某人的年龄与身高;

  2、写出下列函数的解析式.

  (1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

  (2)汽车加油时,加油枪的流量为10L/min.

  ①如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

  ②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系.

  (3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

  八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

八年级数学教案12

  一、目的要求

  1、使学生能画出正比例函数与一次函数的图象。

  2、结合图象,使学生理解正比例函数与一次函数的性质。

  3、在学习的基础上,使学生进一步理解正比例函数和一次函数的概念。

  二、内容分析

  1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

  2、关于一次函数图象是直线的问题,在前面学习13、3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

  三、教学过程

  复习提问:

  1、什么是一次函数?什么是正比例函数?

  2、在同一直角坐标系中描点画出以下三个函数的图象:

  y=2x y=2x—1 y=2x+1

  新课讲解:

  1、我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

  再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

  一般地,一次函数的图象是一条直线。

  前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法、现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

  先看两个正比例项数,

  y=0。5x

  与y=—0。5x

  由这两个正比例函数的解析式不难看出,当x=0时,

  y=0

  即函数图象经过原点、(让学生想一想,为什么?)

  除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。

  实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

  (1)先选取两点,通常选点(0,0)与点(1,k);

  (2)在坐标平面内描出点(0,o)与点(1,k);

  (3)过点(0,0)与点(1,k)做一条直线、

  这条直线就是正比例函数y=kx(k≠0)的图象、

  观察正比例函数y=0。5x的图象、

  这里,k=0、5>0、

  从图象上看,y随x的增大而增大、

  再观察正比例函数y=—0、5x的图象。

  这里,k=一0、5<0

  从图象上看,y随x的增大而减小

  实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质。

  先看

  y=0。5x

  任取两对对应值。 (x1,y1)与(x2,y2),

  如果x1>x2,由k=0。5>0,得

  0。5x1>0。5x2

  即yl>y2

  这就是说,当x增大时,y也增大。

  类似地,可以说明的y=—0、5x性质。

  从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

  一般地,正比例函数y=kx(k≠0)有下列性质:

  (1)当k>0时,y随x的增大而增大;

  (2)当k<0时,y随x的增大而减小。

  2、讲解教科书13、5节例1、与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

  y=kx+b(k,b是常数,k≠0)

  通常选取

  (o,b)与(—

  两点,

  对于例l中的一次函效

  y=2x+1与y=—2x+1

  就分别选取

  (o,1)与(一0、5,2),

  还有

  (0,1)—与(0、5、0)、

  在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

  结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质。

  对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

  课堂练习:

  教科书13、5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

  课堂小结:

  1、正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象、

  2。一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点,0),过这两点的直线即所求图象。

  3、正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳)、

  四、课外作业

  1、教科书习题13、5a组第l一3题、

  2、选作教科书习题13、5b组第1题、

  一次函数的图象和性质相关文章:

  多边形的内角和

  相似三角形

  一元二次方程根与系数关系

  正方形

  三角形的中位线

  一元二次方程

  探索多边形内角和

  确定一次函数的表达式

八年级数学教案13

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

八年级数学教案14

  教学目标

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题

  教学重点:平行四边形的判定方法及应用

  教学难点:平行四边形的判定定理与性质定理的灵活应用

  一.引

  小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  二.探

  阅读教材P44至P45

  利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2对角线互相平分的四边形是平行四边形。

  证一证

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  证明:(画出图形)

  平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学教案15

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

【八年级数学教案】相关文章:

八年级数学教案11-13

八年级数学教案12-26

八年级上册数学教案07-26

八年级上册数学教案12-23

八年级数学教案(15篇)12-29

八年级数学教案15篇12-22

八年级数学教案变化的鱼06-11

八年级上册数学教案人教版07-26

最新人教版八年级数学教案08-26

八年级上册数学教案北师大版07-26