五年级数学平行四边形的面积教学反思(精选11篇)
作为一位优秀的老师,我们都希望有一流的课堂教学能力,写教学反思能总结教学过程中的很多讲课技巧,那么优秀的教学反思是什么样的呢?下面是小编精心整理的五年级数学平行四边形的面积教学反思,欢迎阅读与收藏。
五年级数学平行四边形的面积教学反思 1
小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。本节课是促进学生空间观念的`发展,扎实其几何知识学习的重要环节。
关于这节课,我是这样设计的:首先,通过比较两个图形的大小来引入到对新知识的学习中来,让学生明白要知道各个图形的面积才能进行精确的比较。然后在新知识的学习时,从数格子中了解到这两个图形的面积是一样的。为下面的拼图形作好铺垫。同时让学生明白数格子有它的局限性,让学生思考有没有其他的方法来求平行四边形的面积。接下来就是让学生进行动手操作,试着将平行四边形转化成一个我们已经学过的图形,从而让学生自己推导出平行四边形的面积计算公式。在这个过程中,让学生发现平行四边形和转化成的长方形之间的联系,使学生对平行四边形的面积公式的推导有更深的认识。在得出平行四边形的面积公式后,进行例1的教学,让学生运用刚学的知识解决这一问题。最后在练习的时候,强调在计算平行四边形的面积时一定要知道底和底所对应的高,这样才能计算。同时,由S=ah所衍生的另两个公式:S÷a=h、S÷h=a,也得到了一定的应用。
教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,需要以后在教学中不断改进。
五年级数学平行四边形的面积教学反思 2
《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。
反思这节课,具体概括为以下几点:
第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。
第二、重视操作探究,发挥主体作用。
为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。
第三、渗透“转化”的思想。
“转化”是数学学习和研究的一种重要思想方法,在本节课的'教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。
第四、联系实际设计习题,学习内容始终充满生活气息。
存在的一些问题和困惑:
1、应变课堂能力的教学机智不够灵活需要多锻炼。
如新知猜想时耗时过多。
2、学生数学知识的底蕴要加强。
学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?
就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。
其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。
五年级数学平行四边形的面积教学反思 3
九月份,我们五年级全体数学教师在杨秀霞专家的指导下,就《平行四边形的面积》这一内容经过了说课、上课、评课等一系列的教研活动,我很荣幸被抽到最后一轮上课。收获很大。
提高了我的专业素养。原来在确定一节课的教学目标时,我会照着教学大纲或备课手册的做法抄下来,而现在我能根据自己的教学内容确定本节课的教学目标,如在本节课中我会把大部分时间花在数方格和剪拼上,充分发挥学生创造性思维和动手操作的能力。因此,我的教学目标就确定为“
①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。
②在操作、观察、比较的过程中,渗透转化的思想,发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。
1、注重了学法的指导,将“转化”思想进行了有效的渗透,让学生学会用以前的知识来解决现有的问题。长方形的面积的计算是平行四边形面积计算的生长点,是认知前提,是可以利用的起固定作用的知识。因此,开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的'沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
2、注重了学生数学思维的发展,重视了对学生学习知识水平的进一步深化,通过有梯度的练习设计,提高学生对平行四边形面积计算掌握水平。开始以长方形面积计算和公式的由来,激发学生探究激情,“到底平行四边形的面积怎样求?”在知道了平行四边形面积与底、高有关后,进一步学生明确平行四边形的面积应用底乘高,而不能边长乘边长,提高了学生对平行四边形的面积的掌握水平。教学讨论面积公式后,以开放练习的形式,出示、基础练习,使学生关注这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。在本课的教学中平行四边形底和高对应关系的寻找是很重要的一个环节,这就为日后学习三角形、梯形等平面图形的面积计算奠定了基础;
3、讨论,知道平行四边形的两条底和一条高,怎样求面积?再根据面积和另一条底,怎样求它对应的高?这些练习进一步丰富了学生的认识,有效的提高了课堂教学的效率。
4、在课堂教学中,教师的应变能力十分重要,有效的把握学生课堂生成,灵活应对课堂突发的情况,是我教学中应注重的。
五年级数学平行四边形的面积教学反思 4
《平形四边形的面积》是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。
一、注重数学专业思想方法的渗透。
我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。
二、注重学生数学思维的发展。
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动。
在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的'方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
四、练习的设计,由浅入深,环环相扣。
1、让学生进行两个平行四边形面积的计算,是对平行四边形面积公式的应用。
2、让学生对平行四边形面积公式逆向思考,给了面积和底或高求高或底。
3、辨析同底等高的平行四边形面积是否相等。
五、我的遗憾
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
五年级数学平行四边形的面积教学反思 5
本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
成功之处:
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的'非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
不足之处:
学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
再教设计:
加强学生的语言表述能力,做到规范、严谨。
五年级数学平行四边形的面积教学反思 6
《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的`课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。
五年级数学平行四边形的面积教学反思 7
由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:
①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。
②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。
开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的`图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
五年级数学平行四边形的面积教学反思 8
孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。
平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。
邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。
经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的改造,沟通“教”与“学”的通道。
在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的.差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。
五年级数学平行四边形的面积教学反思 9
“平行四边形的面积”这一课时是第六单元《多边形的面积》的起始课,也是学生第一次用转化的数学思想方法来探索面积计算公式,这节课上,学生在探索过程中获得数学思想,活动经验为之后的“三角形的面积”及“梯形的面积”计算公式的探索起到重要的借鉴作用。根据我所教的班级的学生实际情况,在备课时我注重以下几个方面的尝试:
一、创设生活情境,激发孩子们的`学习兴趣。引入部分,我为学生设计了比较平行四边形花坛和长方形花坛两个面积比较大小的情境,使学生在情境中发现以前所学的知识并不能解决这个问题,从而自发的产生探究平行四边形面积计算的兴趣。
二、动手操作,探索新知。在推导平行四边形面积计算公式的过程中,我设计了数一数,剪一剪,拼一拼等一系列的操作活动,放手让学生利用方格纸及割补,拼摆等方法,在操作实验中运用转化的思想将平行四边形转化成学生熟知的长方形,并引导学生观察交流,讨论所拼成的长方形的长和宽与原来平行四边形的底和高之间的联系,通过学生自己的观察分析,得到长与底,宽与高的一一对应的关系,从而顺理成章的得到平行四边形的面积计算公式。
三、突出学生在数学学习中的主体地位,彰显生命化课堂的学习本质。在本节课的教学中,我始终将自己定位在学习的组织者,引导者参与其中,注重在探究中向学生渗透有效的数学思想和数学方法,注重学习方法的优化。并通过教学中师生之间,生生之间的互动关系产生教与学之间的共鸣。
虽然这节课由于时间的关系,还有一部分的学习任务没有完成,但是我想学生通过这样的自主探究,由“要我学”到‘我要学“的思想转变,相信还是受益匪浅的。
五年级数学平行四边形的面积教学反思 10
《平行四边形面积》的教学目标是经过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生应对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,供给了很好培养学生独自思考本事的素材,但对学生的要求较高,鉴于本班的学生情景,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情景的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,能够经过数格子的方法去计算面积,也能够转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,那里就复习下正方形和长方形面积公式。
3、比较等底等高的平行四边形和长方形面积谁大?经过图形出示。学生讨论得出结论:能够把平行四边形转化成长方形,这样就能够用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的转化思想,有了课始的`铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学贴合学习规律。
五年级数学平行四边形的面积教学反思 11
《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与平行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的.讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。
一、导入环节中的得与失
得:复习长方形的面积为新知探究做好铺垫。
失:从复习旧知到情境导入衔接不够自然,略显牵强。
二、探究新知环节中的得与失
得:先用数方格得方法探究平行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。
失:在探究环节,不能很好的利用学生的错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出平行四边形面积公式有些被动。
三、巩固练习环节中的得与失
得:最后一道题设计较好,让学生知道算平行四边形的面积时要选择高与相应的底。
失:时间安排的原因,处理的过于粗略。
之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。
【五年级数学平行四边形的面积教学反思】相关文章:
《面积》数学复习教学反思03-12
《面积》数学复习教学反思04-15
数学面积的认识教学反思08-15
数学平行四边形面积教学反思范文09-28
《梯形面积计算》数学教学反思08-29
《面积》数学复习教学反思通用09-26
数学《面积的认识》教学反思例文06-25
《平行四边形面积》教学反思04-14
平行四边形面积教学反思04-14