《三角形内角和》的教学反思(精选13篇)
在快速变化和不断变革的新时代,我们的工作之一就是教学,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。反思应该怎么写呢?以下是小编为大家收集的《三角形内角和》的教学反思,欢迎阅读与收藏。
《三角形内角和》的教学反思 1
课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的.过程中我提出了两个问题:
第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足,这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。
《三角形内角和》的教学反思 2
课程标准“倡导自主探索、合作交流与实践创新的数学学习方式,从学生已有的知识背景出发,向他们提供了充分地从事数学活动和交流的机会,促使他们在自主探索的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,同时获得广泛的数学活动经验”这一思想。我在组织《三角形》的教学时,利用生活中的具体事例,让学生从中找出我们所熟知的图形,从红领巾、自行车的车架、屋顶等物体中找到三角形,然后利用学具让学生拼搭这样的三角形,学生在动手搭的过程中,发现有一类三角形的三条边一样长,有一类三角形两条边一样长;而也有三条边都不一样长的。
所以相信学生,大胆放手让学生去探索、去尝试。设计学生自主提出问题的情景,让学生通过操作、讨论交流,探索分类的办法,使学生真正“动”起来,思维“活”起来,在“玩”中学知识,在“悟”中明方法,在“操作”中自主探究,学得主动,学得轻松,让学生感受到了学习的快乐。
我在讲“三角形的`内角和”时,开始就由两个大小不同的三角形在争论谁的内角和大入手。在学生的认知结构中,对于这场争论的结果是什么已经没有悬念了,但这样的争论会引发他们思考,为什么不同的三角形内角和会一样?是不是所有的三角形内角和都一样?这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。
处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。
《三角形内角和》的教学反思 3
在三角形的特性这节课里,我把重点放在了对定义的理解:例如三角形的定义中的“围成”,高的定义中“顶点”“对边”“垂线”,“线段”。首先我是让学生自学了课本的内容,然后出了一些判断题,让学生判断哪些是三角形的高的正确画法,然后再让学生说明在高的定义中关键词,你是如何理解的。
在三角形三边关系这节课里,我是让学生通过自己动手操作,摆纸条或木棍,初步感知所要学的知识,然后提问1:为什么4,5,9和3,6,10两组小棍不能摆成三角形,通过学生的讨论得出三角形的三边关系:任意两边的和大于第三边。提问2:如果去掉“任意”两个字行吗?把结论的讨论引向深入。学生得出去掉这两个字不行,判断能否组成一个三角形需要计算三次。加深了学生对定义的理解。例如10+3>6,但这三条线段就不能组成三角形。提问3:我想“偷懒”,最少计算几次就可以判断出来,把对定理的理解引向深入,学生通过讨论得出:只要最短的两条边的边长和大于第三边,就可以构成三角形。提问4:除了加法以外,还有没有用其他的方法能判断出三条线段能否组成三角形,让我意外的是学生自己得出了:用最长的减最短的边的差小于第三边就可以,在按角分类的课里,我的设计是让学生自学,然后判断下面的哪些图形是什么样的三角形,并说明自己的理由,初步感知定义。然后设计了一个题:出示一张只画了一个锐角的图片,问:只给一个锐角,你能判断出它是什么三角形吗?有的说能,有的说不能。然后让学生自己画,最后得出结论,一个锐角不能判断出它是什么三角形。接着问:如果是两个锐角呢?(也不能)如果是三个锐角呢?(一定行)如果是一个直角或一个钝角你能判断吗?(能)最后提问:一个三角形中至少有几个锐角,最多有几个直角,几个钝角?这样学生就不断加深了对角的分类的理解,在按边分类的教学设计中,学生在质疑解难,说明自己的发现中,所表现出的让人惊叹不已。举几个例子:学生1说:我发现了等边三角形中的三个角相等。学生2:我还发现了他们每个角都相等,都是60度。很显然这是两个不同层次的发现,但说明同学们都在动脑思考。学生3:我发现了相等的边所对的角相等。学生4:我也发现了相等的角所对的边是相等的。然后我顺势引导出:等边对等角,等角对等边当然啦,还有同学发现了其他。
反思:从整体上说,这几节课的课堂效果还可以,学生的参与度,参与的热情都很高。连班上最不爱听讲的陈赵宜都主动举手回答问题,作业最慢的张晨琳,在前十名就完成了作业,正确率还算可以,这在以前是不敢想的。通过这几节课我在想,究竟如何让学生喜欢上自己的课,怎样才能提高课堂的效率。
1、几何课要让学生去动手操作,而不是用耳朵去听,也就是给学生留有足够的自主探索的空间与时间。只有学生自己主动去探索、去实验、去发现,才能调动学生的学习的积极性,这样学生才会真正理解所学的'知识。
2、对于概念的教学,应该先让学生自学,初步的感知概念,然后教师在设计相对应的判断题,抓住关键字词帮助学生来理解定义。
3、加强学生的质疑解难环节,这样也许学生会提出很多有价值的问题,也许有的会超出你的想象的问题。同时也培养了学生的问题意识,为学生的自学打下好的基础。
4、总之一点,教学设计应该以学生为中心,从学生的角度去看问题,要留给学生足够的时间与空间。并让学生自由的讨论,让学生提出所有的疑难问题,真正的为学生营造一个我的课堂我作主的氛围。只有这样学生才会用心的去学,用心的会探究,用心的去感悟。
当然啦,每堂课下来,静静的反思,总还有一些不周全的地方,我也正在努力的想解决问题的办法。可是不知道为什么?越想好像需要解决的问题越来越多。因此我给自己定下了一条,不断的反思,不断的改进,相信自己就一定会更好。
《三角形内角和》的教学反思 4
《课标》中只要学生在小学里基础上进一步用平行线的有关知识了解三角形内角和等于180度,而小学只用量角器进行测量后,进行相加得到三角形内角和为180度,只是在停留在实践地层面得到此结论,而进入到初中阶段进而到理论地层面来,说明三角形内角和为180度,基于这个基础我在引入新课时既兼顾到小学的知识,又根据第二章平行的有关知识,引入新课进而过渡到利用撕拼动手实践并要求他们用小学的知识(平行)来解释。这样处理将课本的资源进行开发结合学生的动手实践将课本的难点与重点呈现出来。利用小组合作的方式,通过学生互动,教师补充讲解,从而得三角形内角和等于180度,为了巩固所得结论,我设计利用游戏方式,让学生互相猜一猜,三角形遮掉二个角,让同伴猜另两个角,从而引出三角形的分类,又利用互生在给出答案中出现的错误,请同学们来解释为什么三角形中只能有一个直角或钝角,渗透的.反证法的思想,利用学生互动(辩论三角形)时得出结论直角三角形比较特殊,进而进入本节课的第三个知识目标,直角三角菜的有关知识及两锐角互余这一性质,最后通过巩固练习既练习今天的知识,又借机进一步规范学生解题,并立即起到了立竿见影的效果。
1、自我感觉到处理该课的环节较为满意,利用小学知识,创设情境引入新课,利用撕拼(动手)小组讨论拼法及解释说理(体现、合作、交流、互动)来呈现该课的重难点,利用游戏,同伴之间互动来达到巩固新知,又引出下一个环节:三角形按角分类,再通过辩论(互动)巩固分类,又从中引出直角三角形的性质。整节新课环环相扣,一气呵成,双体现学生是数学学习的主人,又发挥教师的组织,领导作用。
2、感觉做得不够的地方:
A、师生之间互动还做得不够到位。
B、学生在互动时,师巡视,指导“弱视群体方面”还不十分到位。
C、在培养学生发散性思维方面还不够。
D、对学生的评价的方式,角度还不够多。
《三角形内角和》的教学反思 5
我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。
教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的数学教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,每一个教师既会有融教学科学与艺术相结合的佳作,也难免出现有失水准的拙课。通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。
本节课的教学先通过三角形王国的小矛盾,让学生角色扮演导入新课,激发学生学习兴趣,进而引出“三角形内角和是180度”的猜想,然后组织学生自主探究、操作,在实践中验证猜想,得出结论。然后利用已学知识,解决相关问题。
本节课学生学习积极性比较高,以下一些方面还是做得比较好的:
教学设计环节紧凑,思路清晰。用了大量时间让学生小组进行实践操作,进行小组实验,让他们自己感知探索出三角形内角和,注重了学生操作能力和小组合作探究能力的培养。
1、用了量、算、拼,折各种不同的方法,让学生从不同角度探索,发现思考,都可以得出三角形的内角和是180°的结论。感受数学的严谨和魅力,也使得这个知识点的理解更加透彻。
2、当完全放手让学生实验操作调整为要求明确以后,教师适当进行一些演示,如果学生还不能完成操作,则由教师完成,只要学生能够拿着一个拼合好的图形进行观察,我就把课堂节奏掌控住,把他们的注意力引到定理的证明过程上,很好的完成教学目标。
3、设计了不同层次的练习题,判断题都是学生平时容易出错的`题目,在课堂用直观的课件显示出来,使学生印象深刻。然后逐步加深难度,到最后的思考题,使得不同层次的学生都学有所得。
本堂课也还有很多问题值得我深思,改进:
1、传统的教育模式让学生和老师都习惯于填鸭式的学习方法,学生总是被动的接受知识。让学生自己实践操作找结论,部分学生却不知从何做起,没有自己动脑主动学习的习惯。今后应加强学生自主思考能力的培养。
在拼一拼的活动中,老师应该让学生先把三个角标号,撕开后再拼。在拼成平角后要用量角器或者直尺测量一下,看拼的图形是不是平角,要用严谨的态度对待,而不能光凭眼睛来判断。
2、在进行拼、折活动时,部分学生不知道怎样折成一个平角,撕开之后就找不到要拼的角的时候,老师就应当马上去帮助,去指导。当学生体验认知过程时,一定要让他们感受学习的愉快,获得成就感,只有这样才能激发学生学习数的兴趣,学好数学的信心。
3、时刻要注意自己和学生语言、动作的规范,体现数学的严谨性。在学生读题,回答问题的时候,要说出度数单位。在练习,书写时也要注意度数单位,强调格式。
由于是借班上课,对学生了解不够,在课上没能以学生为主,有的内容完全可以交给学生讲解,我没能及时体察到这一点,效果不是很好,课堂气氛没能调动起来,一位老师说的好,公开课就是表演课,但主角应该是学生,老师只能做导演而不能替代学生的角色。上完课后,很多老师给了我许多宝贵的建议,比如:我上课时表情呆板于第三个练习题,讲解不够详细,大部分学生估计没听懂,我没能做到及时根据学生的表情、应答人数等细节及时调整讲题的速度??,在聆听诸位老师的点评时,有时让我有种茅塞顿开的感觉,非常感谢各位老师的精彩点评。
作为一名青年教师,我觉得教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的政治教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。
教学过程中达到的预设的教学目的、良好的教学方法、我都会在课后记下来,供以后教学时参考使用,也可在此基础上不断改进、完善、推陈出新。同时对课堂教学中存在的疏漏失误之处,也要对它们进行系统地回顾、梳理,作出深刻的反思、探究和剖析,使之成为今后再教学时的参考物,类式的错误不在发生。 我执教的本节课在小组合作交流讨论及评价等方式来组织教学活动时,做得还不够,收放得不够自如,同学也没有完全养成良好的行为习惯,不能高质量地完成某些教学环节,但是,我觉得一个成功的好老师就是要在教学上敢于突破和创新,我应该大胆放手让学生去操作、去探索。
叶圣陶先生曾经说过:“教是为了不需要教,教师不但要教给学生知识,更要交给学生思维科学的学习方法。”在素质教育改革的今天,在新形势下,作为一名青年教师,在指导学生如何更好的学习上,还任重道远。但我会坚持以对学生负责为中心,不断学习先进的教学理念和育人方法,不断学习反思,在反思中不断提高,并结合课堂教学实践,为追求高效课堂而不断完善自我。相信“雄关漫道真如铁,而今迈步从头越”,我会在今后的教学岗位上,“路漫漫其修远兮,吾将上下而求索”。
《三角形内角和》的教学反思 6
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。
我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的'验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。
后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话 ,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
《三角形内角和》的教学反思 7
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1.重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2.在动手操作中验证猜想。
让学生拿出课前准备的`锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3.重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
《三角形内角和》的教学反思 8
学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的.内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
《三角形内角和》的教学反思 9
《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:
验证过程
1、要知道我们猜测的是否正确,你有什么办法验证呢?
先独立思考,有想法了在小组里交流。
学生交流想法:
生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)
生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的'内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
《三角形内角和》的教学反思 10
我在讲“认识三角形”时,“三角形内角和等于180度”这一结论学生早知晓,为什么三角形内角和会一样?
这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪、之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的'验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。
有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……其中有一组同学竟然用稚嫩的声音说:可以用数学方法来证明。于是他们阐述自己借助与三角形底边平行的线与三角形所形成的内错角进行证明的方法。
至此学生完成了感性认识到理性认识的转化过程,充分展示了数学地思维方式和思想方法。
《三角形内角和》的教学反思 11
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的`说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
《三角形内角和》的教学反思 12
《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的`内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习
热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三
个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。
本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
《三角形内角和》的教学反思 13
《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的`内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?
二、小组合作,自主探究。
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
【《三角形内角和》的教学反思】相关文章:
《三角形的内角和》教学反思03-07
《三角形的内角和》教学反思03-03
三角形内角和教学反思03-07
三角形的内角和教学反思优秀10-13
《三角形的内角和》反思02-26
《三角形的内角和》教学反思15篇04-02
《三角形的内角和》教学反思(精选23篇)05-16
三角形的内角和的教学反思(精选23篇)04-25
《三角形的内角和》教学反思(精选15篇)06-27
《三角形内角和》教学反思(精选14篇)03-21