用数对确定位置教学反思

时间:2021-04-12 09:25:03 教学反思 我要投稿

用数对确定位置教学反思(通用6篇)

  作为一名人民老师,课堂教学是我们的工作之一,写教学反思能总结教学过程中的很多讲课技巧,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的用数对确定位置教学反思(通用6篇),希望对大家有所帮助。

用数对确定位置教学反思(通用6篇)

  用数对确定位置教学反思1

  一、挖掘教材、理解教材、明确目标《用数对确定位置》这节课开始给我的感觉是比较简单的一个内容。可当静下心来细细琢磨教材时,才感觉到本不像我所料。这节课的重点不是满足让学生会用“数对”表示一个位置就可以了,而是让学生回顾科学家探究的历程,“数对”的产生过程才是本节课的关键所在。“数对”这个概念对五年级的小孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章轻松地接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。

  二、遵循学生的原认知,注重数学与生活的联系课堂上,我利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,通过让学生指出赵亮同学的位置,学生开始表达位置的方法不一样,从而产生了统一标准的必要性,然后潜移默化地建立起“第几列第几行”的概念。接着通过座位图来学习“数对”,让学生用“数对”来描述座位图中人物的位置。再借助班级的实际座位,让学生用“数对”表示自己的位置,并通过一些小游戏进一步明确实际座位中的行和列。在明确了“数对”的概念后,抽象出方格图,让学生在方格图中确定位置,将数学知识应用到生活中去。

  用数对确定位置教学反思2

  本节课开始给我的感觉是比较简单的一个内容,可当静下心来细细琢磨教材时,才感觉到本不像我所料。“数对”这个概念对五年级的孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章地轻松接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。

  基于以上分析,本节课的教学过程主要体现在以下几个方面:

  1、用数对确定位置是基于学生已经学习了用第几排第几个描述位置的基础上进行的,我从孩子最熟悉的教室座位出发,唤起了学生用已有知识来确定位置的经验,帮助学生找到新旧知识的连接点。由于观察方位、角度的不同,学生对于刘珈吟同学位置的描述产生了多种方法引起争议,从而产生认知需求:如何才能正确、简明地描述位置呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。

  2、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过小组谈论,学生找到了许多种简单表示第2列第3行的方法,然后让学生汇报交流,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。

  3、在教学中引导学生经历由实物图到方格图的抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了由实物图到方格图的变化过程,渗透了数形结合的思想。

  4、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我从描述班级内刘伽吟同学的位置开始,从而引起新知识的探讨过程。最后我设计了报数对找位置以及猜一猜的文字游戏也是这一思想的体现。

  通过实际的教学和周主任等各位领导的点评,我认为自己在教学这节课的时候还存在着以下几点缺憾:

  1、备课时总想面面俱到,查阅大量资料,但由于缺少经验对教材的理解不够透彻,有时候不知如何取舍,导致今天的课堂上在教室里找位置时本意是模拟教材情境图才以教师为观察者的,但没有和孩子们强调其实在现实生活中,自己就是观察者。

  2、在渗透“数形结合”的思想时,我直接由实物图过渡到方格图,虽然利用多媒体有个过程的引导,但不如先由实物图到点子图,再把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。我想有这样的演示再填表时效果会更好。

  一节课已经结束了,但我的思考却没有终止,我不停地思考着教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维而不是记住一些知识,知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。

  用数对确定位置教学反思3

  1、关注学情,教而有效

  认知教育学家奥苏贝尔说过:“如果我不得不把教育心理学的所有内容简约成一条原理的话,我会说:影响学习的最重要的因素是学生已经知道了什么,弄清了这一点后,再进行相应的教学。”的确,有效的数学教学应该基于学生的已有经验。唤醒学生原有知识,了解学生的生活经验和已有知识背景,是学生学习的基础。因此我在教学时,首先通过让学生自己来描述赵晨的位置,激活学生头脑中已有的描述物体位置的经验,然后通过交流评价,自己认识到这些方法的不足,引发学生产生用统一、简明的方式来确定位置的需求,体会学习新知的必要性。

  2、巧设平台,彰显个性

  学习是一种个性化行动。作为教师,应当在课堂教学环境中创设一个有利于张扬学生个性的“场所”,让学生的主动性和创造性得到尽情释放。在让学生以赵晨的位置“第3列第2行”为例,根据数学的简明性特点和符号化特点自己创造更简洁的表示方法的环节中,为学生提供了自主思考的空间,学生的思想无拘无束,创新灵感、创新思维不断涌现,课堂真正成为了他们发挥自己聪明才智的乐园。然后再针对学生自己创造的方法,通过师生互评、生生互评,让学生产生矛盾冲突,抽取共性,从而产生确定位置的方式——数对。可以说数学的特点促进了数对的产生,数对的产生也符合数学的特点。再通过对“数对”名字的分析,使学生对于“一对数”确定位置的理解也更加清晰了。

  3、知趣交融,快乐求学

  心理实验表明,学生经过20至30分钟紧张的新课学习后,会感到疲劳,学习兴趣降低,学困生表现尤为明显。而“兴趣是最好的老师”,为了继续保持学生积极的学习状态,教师要特别注意练习的设计。“找好朋友”的练习紧密联系生活实际,而且形式活泼有趣,极大调动起了学生学习的兴趣。学生在这一活动中,动眼看,动耳听,动脑想,动口读,动手找,调动了多种感官参与学习。通过这个形式新颖有趣的练习,变学生被动学习为主动参与,既增大了练习面,又使全体学生主动参与。

  4、研究探索,发展思维

  本课有两大主线贯穿始终:一条是图例的抽象和演变:由实物图、到点子图再到方格图,这一抽象的过程细腻、清晰,借助“数形结合”的方式很好地渗透了“坐标”这一较难理解的数学知识,为学生的后续学习做好铺垫。另一条线是确定位置的方法:由不同的描述方法过渡到列与行的方法最后通过对比淘汰产生数对的方法,这一表达方式逐步递进、简化、抽象,都使学生对数学的简捷性和抽象性有了深刻的感受和体会。课堂中,两大主线的层层递进与发展,把本课数学知识和思想的产生与发展过程展现得淋漓尽致,教师引导学生进行前后对比反思,及时提升学生的认识,培养反思习惯和能力。通过学习,学生不但熟练地掌握了数对知识,而且真正感受到了数学能够把复杂的问题简单化,也真正体会到了数学符号的简洁清晰,最重要的是学生真正亲身经历了数学知识、数学思想的形成过程,这些都为学生的全面发展、长远发展打下了良好基础。

  5、缺点与不足

  常言道:教学永远是一门有遗憾的艺术。的确,尽管在不断的.雕琢中我努力追求完美,但几缕缺失时常萦绕脑际,难以释怀。

  (1)在第一环节中让学生用自己的方法把方队中赵晨的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。

  (2)这节课不仅仅要教会学生用“数对”的方法来表示位置,更重要的是让学生在解决问题中,构建“数对”模型,经历用简洁的数学符号确定位置这一抽象的过程,这才是本课的重点。学生在经历了由文字描述到符号表达,由繁到简的再创造过程中,进一步感受到了数学的抽象化、符号化。这些方面本课都体现的比较充分,但在让学生感知“数对”确定物体位置,要从两个维度来考虑的数学本质的同时,对数对的有序性体现的不够充分。

  (3)此外,联系实际举例:说说生活中哪些地方用到了数对思想,学生非常缺少这方面的经验,往往举不出恰当的例子,是否能改为先介绍“地球上经纬线知识”,课后再让学生在生活中寻找应用了数对思想确定位置实例,也在思考中。

  用数对确定位置教学反思4

  《用数对表示物体的位置》知识点不多,对于五年级的学生来说是比较简单的,那么如何使教学的内容更丰富,在课堂上激发学生学习的需要,在导入环节,我出示了小军班级的座位图后,先向学生提出要求:你能用以前所学过的知识告诉我小强的位置在哪里吗?你是怎么看的呢?学生在描述时出现了两种不同的说法:“第3列第2个”、“第2排第3个”。小强的位置没变,但同学们看的角度和方法不同,所以产生了不同的说法,从而使学生产生正确、简明描述小强位置的需要。学生在生活中已具备了确定列和行的经验,因此,便很顺利地得出竖排叫做列,从左往右数,横排叫做行,从前往后数,小强是在第3列第2行。知道了确定第几列、第几行的规则后,再将所站位置的场景加以抽象,用圆圈表示实际场景中不同的位置,详细地标出每一列每一行,让学生在圆圈图中找出小强的位置,提高了学生的抽象思维能力。

  同时,向学生介绍表示位置还可以用更简明的表示方法——用数对确定位置。学生在具体情境中学习用数对确定位置,并理解用数对表示物体位置的方法,第一个数表示第几列,第二个数表示第几行。当学生学会从平面图上用数对确定位置后,我又引导学生回归到生活中,在教室里,找到自己的位置在第几列第几行。通过游戏的形式,使学生认识教室里的列和行,并学会描述自己的位置和好朋友的位置。本节课学生学的比较感兴趣,课堂效果较好。

  用数对确定位置教学反思5

  这节课是苏教版四年级下册第八单元的内容,这一单元主要是让学生能够理解什么是列和行,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示平面上点的位置(限正整数)。而我这一节是第一课时,这一课时主要是要求学生能够用数对来表示所在位置。

  在此之前,学生已经会有语言文字描述自己在教室中的位置,在日常生活中积累了用类似“第几排第几个”的方式描述物体位置的方法。数对的学习将为学生以后学习直角坐标系打下基础。“数对”这一数学知识对于学生来说比较抽象。

  为了解决这一问题,我注意了以下几点。

  1、本节课的教学先让学生看情境图,说出小军的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据“小军坐在第4组第3个”和“小军坐在第3排第4个”确定小军的位置,有的从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,从而知道了要统一说法。最后让学生说一说你在班级是第几列的小游戏,帮助学生们进一步认识列和行。接着我又要求学生用列和行说一说你在班级的位置和你同桌的位置,通过小游戏帮助学生们加深了对列和行的认识。

  2、接着我又要求学生记录下几个同学的位置,这是学生们发现如果全部记录下来太长了,时间上也来不及。从而引导学生提出问题有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。然后我要求学生自己想一想设计出一个你认为比较方便的方法,接着再要求学生写在黑板上。最后我在学生设计的基础上用数对表示位置的基本方法,使学生认识到数对中的第一个数表示“列”数,第二个数就表示“行”数以及这个数对的读法。

  3、通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先是结合学生在教室中的位置,通过做游戏,说位置,猜朋友等多种形式,使学生进一步巩固了对行、列和数对含义的认识。接着我又通过小游戏猜猜他是谁,使学生们进一步认识数对,并且明确了要想确定具体的位置必须要同时知道数对中的两个数字。我又安排了找座位的小游戏,让学生们找到自己的位置,其中我准备了一张(6,6)的卡片,然后让学生自己修改卡片,找到自己的位置,从而让学生进一步的认识数对,并且初步体会什么是一一对应。

  尽管我努力想上好这一节课,但仍然有不足之处:

  在第一环节中让学生用自己的方法把方队中小军的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。在处理找座位这一环节的时候,应该着重处理怎么修改就可以找到自己座位的这一环节,让学生能够体会一一对应的。而且在上课的时候总是说得过多,不能放开手让学生去讨论探索,而是把学生牢牢地扎在手中,让学生失去了自主学习的机会。

  用数对确定位置教学反思6

  前段时间我讲了用”数对确实位置”。“数对”是一个较难理解的知识,通过熟悉的情境便于学生用“第几列,第几行”的方式描述物体的位置。所以在教学时,我就结合本班学生的座位来学习理解数对。开始,我先让学生自己描述自己在班级里的位置,在描述位置时出现了不同的说法,从而使学生产生正确、简明描述张亮位置的需要,引导出竖排叫做“列”,从左往右数,横排叫做“行”,从前往后数。并进一步向学生介绍这种讲明的表示方法—————用数对确定位置。接下来,通过自己在班级里的位置进行描述练习,巩固所学的知识。

  让学生描述前后左右同学的位置,及观察数对的特点活动,让学生初步感知同一列、同一行物体数对的特点,为下节课学习做好准备。通过大量的联系之后,让学生说说生活中的数对,同时我也准备了很多生活中的数对,一一展示在课件中,与学生分享。使本节课再一次推向高潮,整节课学生合作愉快,讨论积极热烈,因而学生很容易接受并理解用行列描述位置、用数对确定位置的方法。

【用数对确定位置教学反思(通用6篇)】相关文章:

《确定位置》教学反思02-10

用方向和距离确定位置教学反思范文12-23

《确定位置》教学反思15篇02-10

《确定位置》教学反思15篇02-21

用方向和距离确定位置的课后教学反思范文12-28

【推荐】确定位置教案三篇02-20

《数的运算》教学反思09-17

用百分数解决问题教学反思12-15

积的近似数教学反思01-12

《相反数》数学教学反思12-25