《圆锥体积》教学反思

时间:2021-04-21 19:38:17 教学反思 我要投稿

《圆锥体积》教学反思15篇

  作为一位优秀的老师,教学是我们的任务之一,借助教学反思我们可以学习到很多讲课技巧,怎样写教学反思才更能起到其作用呢?以下是小编为大家整理的《圆锥体积》教学反思,仅供参考,欢迎大家阅读。

《圆锥体积》教学反思15篇

《圆锥体积》教学反思1

以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。

  为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。

  在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。

  通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。

  本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!

《圆锥体积》教学反思2

  (1)

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的知识。

  让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

  出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。

  (2)

  《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  (3)

  一节课下来,我静心思考,有以下几点反思:

  1、一节好的课,在教学时要层次清楚,步步深入,重点突出。

  在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。

  2、一节好的课,应注意激发学生的求知欲。

  新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

  3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。

  由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。

《圆锥体积》教学反思3

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  成功之处:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我首先通过给学生提供两组不同的学具:一组是等底等高的圆柱和圆锥,另一组是等底不等高的圆柱和圆锥。让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,而在等底不等高的圆柱和圆锥中,则不存在这样的关系,圆锥的体积就不是与它等底不等高圆柱体积的三分之一,由此通过公式可以得出:V圆锥=1/3圆柱

  =1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(c*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  由于课前把制作的U盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。

  再教设计:

  上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。

《圆锥体积》教学反思4

  六年级的学生对立体图形已经有了初步的认识,因此,在教学中,我借助圆锥体和圆柱体的联系和区别,引出圆锥体的特征,进而分散了难点。在讲授体积公式时,我设计的实验环节,把学习的主动权交给了学生,学生就可以既动手又动脑,通过自己的努力总结出圆锥体的体积公式,在学习中体会到成功的喜悦。

  建构主义认为,学生的学习不是由教师向学生的单向知识传递,而是学生建构自己知识的过程。学生不是被动的信息接受者,而是一个主动探究、发现知识的研究者。基于以上的认识,我很注重让学生自主学习,通过动手制作圆锥体,培养学生的空间概念,自主探究圆锥体的计算方法,提高解决问题的能力。

  这节课为学生提供了具体的实践活动,创设了引导学生探索、操作和思考的情境,把教师变成“一位顾问”,“一位交换意见的参与者”,“一位帮助发现矛盾论点、而不是拿出现成真理的人”。这节课把学生推到探究新知的“第一线”,让他们自己动手、动口、动脑,主动思考问题,并在探究新知的过程中,暴露感知的矛盾和差异,把他们弄不懂的地方、错误的地方都摆在桌面上,再引导他们通过独立思考,摒弃错误,发现真理,实现由感性认识到理性认识的转化。这样,通过活动,让学生自己发现要学习的东西,能够积极地被同化,因而容易得到更深刻的理解。整节课大部分时间都是学生在操作,有独立的思考,有小组的合作学习,有猜想,有验证,有观察,有分析,有想像,使学生在尽可能大的活动空间中切实体验到数学对解决实际问题是有用的,让学生在探究的氛围中自主地学习知识,发现规律,实际应用,从而获得成功的体验。

《圆锥体积》教学反思5

  一、教学内容:义务教育课程标准实验教科书(北师大版)六年级下册第11~13页

  二、教学目标:

  1、知识技能目标:

  ◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

  ◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

  2、思维能力目标:

  ◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

  3、情感态度目标:

  ◆使学生在经历中获得成功的体验,体验数学与生活的联系。

  三、教学重点、难点:

  重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  难点:探索圆锥体积的计算方法和推导过程。

  四、教具准备:

  1、多媒体课件。

  2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

  五、教学过程:

  (一)创设情境,导入新课

  1、故事情景引发猜想

  电脑呈现出动画情境(伴图配音)。

  炎热的夏天,小明和小强去“广场超市”的 冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)

  (学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)

  教师:学完今天的内容后,同学们就能正确解决了!

  2、圆锥实物揭示课题

  ①教师出示一筒 沙,师:将这筒沙倒在桌上,会变成什么形状?

  (学生猜想后教师演示)

  ②师:在这堂课上,你希望学到哪些知识呢?

  (生自主回答,确立学习目标)

  ③揭题:圆锥的体积

  师:好,我们一起努力吧!

  (二)自主探索,合作交流

  1、直观引入直觉猜想

  (1)教师演示刨铅笔:把一支圆柱形铅笔的`笔头刨成圆锥形。

  (2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

  ①教师鼓励学生大胆猜想。(生说可能的情况)

  ②师:你们是怎样理解“相应的”一词的?说说你的看法。

  生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)

  2、实验探索发现规律

  (1)小组讨论填写材料单,有顺序地领取材料

  学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)

  (2)小组合作实验,并填写实验报告单。

  实验方法

  发现结果

  第一次实验

  第二次实验

  第三次实验

  结论:

  (3)汇报结果,实物投影展示实验报告单。

  (4)组际交流,得出结论:

  结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。

  结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

  结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

  结论4:圆柱的体积正好是圆锥体积的3倍。

  结论5:圆柱的体积是等底等高的圆锥体积的3倍。

  ……

  师:同学们实验的结论各不相同,到底哪组的结论对呢?

  (各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。

  (5)参与处理信息。

  围绕三分之一或3倍关系的情况讨论:

  师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?

  (请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)

  师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

  (生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。

  师:总结以上各个小组的看法,我们可以得出什么样的结论?

  生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

  生2:圆柱的体积是等底等高的圆锥体积的3倍。

  生3:我认为第一种说法较合理,强调了圆锥体积的求法。

  ……

  师总结并板书:

  圆锥的体积等于和它等底等高的圆柱体积的1/3。

  3、启发引导推导公式

  师:对于同学们得出的结论,你能否用数学公式来表示呢?

  生:因为圆柱的体积计算公式v=sh;所以我们可以用1/3 sh表示圆锥的体积。

  师:其他同学呢?你们认为这个同学的方法可以吗?

  生:可以。

  师:那我们就用1/3 sh表示圆锥的体积。

  计算公式:v= 1/3 sh

  >师:(1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  生回答,师做总结

  4、简单应用尝试解答

  例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

  (生独立列式计算全班交流)

  (三)巩固练习,运用拓展

  1、试一试

  一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

  2、练一练

  计算下面各圆锥的体积:

  3、实践性练习

  师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。

  4、开放性练习

  一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)

  (四)整理归纳,回顾体验

  1、上了这些课,你有什么收获?(互说中系统整理)

  2、用什么方法获取的?你认为哪组表现最棒?

  3、通过这节课的学习,你有什么新的想法?还有什么问题?

  (五)问题解决。(电脑呈现出动画情境)

  小明和小强到底买哪种形状的冰淇淋更合算呢?

  师:谁能帮他们解决这个问题呢?

  (学生说出买圆柱形的冰淇淋更合算的理由。)

  六、板书设计:

  圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的1/3。

  七、设计反思:

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:

  (1)密切数学与生活的联系,富有儿童情趣。

  从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又服务于生活的指导思想。

  (2)在经历“错误”之中历炼思维

  在平时的课堂教学中,学生往往会出现很多错误性的东西,比如:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠”,就是“遇错即批”,其实大可不必,因为错误之中也有可以充分利用的宝贵资源。“授人以鱼,不如授之以渔”。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误”这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。

  为了使学生对“等底等高”这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了激烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比较、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比较,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是利用“错误”这一资源产生的效果

  (3)学习过程中揭示了一般科学的研究方法:

  提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。

  纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。

《圆锥体积》教学反思6

  教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的方法。

  新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。

  思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。

《圆锥体积》教学反思7

  圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。

  好的地方:

  1.让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我让学生在课前自己先制作出等底等高的圆柱和圆锥型容器教具,让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,由此通过公式可以得出:

  V圆锥=1/3圆柱=1/3Sh(知道底面积和高)

  =1/3πr2h(知道半径和高)

  =1/3π(d*2)2h(知道直径和高)

  =1/3π(C*2*π)2h(知道周长和高)

  2.加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我让学生自己制作学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。

  不足之处:

  没有在制作学具时候,制作出等底不等高的圆柱和圆锥型容器教具,然后挑一组学生实验,得不出圆锥的体积是与它等底等高圆柱体积的三分之一的结论。所以,缺乏对比性,如果加入这个教具的话,更能让学生深知等底等高的重要性。

《圆锥体积》教学反思8

  (课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)

  教学片断

  师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。

  小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。

  师:请同学们利用手中的圆柱和圆锥、沙子,从倒的次数看,研究两者体积之间有怎样的关系?

  生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。

  生2:三次倒满,圆锥的体积是圆柱的三分之一。

  生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。

  ……

  师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看, 将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的内容提出过疑问)

  学生议论纷纷。……

  师:你们说该怎么办?

  生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。

  师:什么情况下,圆锥的体积是圆柱的三分之一?

  生:等底等高。

  生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。

  案例反思

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.

《圆锥体积》教学反思9

  圆锥的体积是圆柱体积的延伸,所以再学生了解圆柱体积计算公式以后,我有意识地让学生来解决圆锥的体积,有的同学说圆锥的体积公式是V=sh,也有的同学说不是V=sh,而是V=sh÷3,当我问及为什么是V=sh÷3时,这位同学说,是书上是这样说的。我知道这位同学在老师讲新课之前,他已提前预习了。接着我把提前准备好的两个学具摆在学生面前,找人上来操作,让学生从实际操作中验证圆锥的体积公式到底是V=sh,还是V=sh÷3。因为数学由于语言的严谨性,我说“圆锥的体积是圆柱体积的1/3”这句话是否正确。有不少同学通过刚才的试验,绝大多数同学都说这句话是对的。然而也有极少数同学认为这句话不够严谨,还应该加上“当圆锥与圆柱等底、等高时,圆锥的体积才是圆柱体积的1/3.”通过辨析,我让学生不仅明白了圆锥体积公式的推导过程,还让学生明白圆锥体积公式与圆柱体积公式之间的内在联系。

  一节好的数学课不是老师教出来的,而是学生通过试验总结、归纳、体验,通过活动“做”出来的。

《圆锥体积》教学反思10

  我认为这节课的设计与教学具有下面的特点:

  一、在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然。

  二、在实验时,让学生小组合作亲自动手实验,以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体制的计算方法。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验。

  但是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,与学生生活联系还不是很紧密的。学生的问题意识不强,都有待探究。

《圆锥体积》教学反思11

  课前我安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时我首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

  在本课中,我无论从问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,我都给予学生充足的时间进行尝试、研究和讨论,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

  我积极地创造机会让学生自己去学习或者去探究问题。通过看一看,摸一摸,比一比,指一指,说一说,猜一猜等问题情境,让学生亲身感受数学,在找中学,在测中学,在思中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学,动起来,活起来,让学生在做中学,使数学课堂焕发出生命活力。

《圆锥体积》教学反思12

  以前教学圆锥的体积时,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳。

  学生对“等底等高”这一重要条件掌握并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我在六年级(6)班设计了这样的教学片断:让学生自选空圆柱和圆锥,研究圆柱和圆锥体积之间的关系,学生通过动手操作,得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一的。

  思维也出现了激烈的碰撞。这时,我没有评判结果,而是让学生经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是灵活机智地利用“错误”这一资源所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题,让他们去几经碰壁,终于找到解决问题的方法。把思考问题的实际过程展现给学生,让学生经历思维的碰撞。这样做实际上是非常富于启发性的。学生做数学题不仅要学会这道题的解法,而且更要懂得这个解法的来历。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,有效利用“错误”这一资源,勇于、乐于为学生创造时机,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验。这样,我们的课堂才是学生成长和成功的乐园!

《圆锥体积》教学反思13

  【案例】

  师:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?下面我们就来研究这个问题.(板书:圆锥的体积)

  (1)创发悬念出示圆柱与圆锥(“等底等高”)同学猜一猜,这个圆锥的体积是这个圆柱体积的几分之几(有的说1/3,有的说1/2)

  (2)分组实验:究竟是1/2,还是1/3呢?我们来做个实验好吗?(把事先准备好的圆柱、圆锥体等容器发给各组,每组白、红、黑的圆柱、圆锥体容器各一个,两个白的等底等高,两个红的等底不等高,两个黑的等高不等底。让学生用圆锥容器盛满水往相同颜色的圆柱容器中倒,观察它们之间的关系。

  (3)各小组报实验结果,几次正好灌满(三次正好灌满)“三次正好灌满,说明了什么?”

  生:圆锥体积是圆柱体积的1/3。(师板书)

  师:同意吗?

  (4)集体实验(师取等底不等高的圆柱和圆锥容器,让两个同学上台实验,其它同学观察)(三次没有灌满)

  师:“灌满了吗?”(没有) “为什么没有灌满?问题出在哪里呢?是不是刚才的结论不对?”(师将圆柱与圆锥容器放在一起比较,引导学生观察、讨论)

  讨论得出:圆锥体积是等底等高圆柱体积的1/3。(师板书补充:“等底等高”)

  一、学生成为学习活动的主动者。

  在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。

  二、在操作中体验

  儿童的思维是从动作开始的,切断了动作和思维的联系,思维就得不到发展。《新课程标准》指出“让学生在做中学”。 实践证明:开放学生的双手,让学生手、眼、脑等多种感官协同活动并参与学习活动。它不仅能使学生学得生动活泼,而且能启迪大脑思维,对所学过的知识理解更深刻,掌握得更牢固。因此,在圆锥体积的教学中我多为学生创设实践操作的机会,并提供丰富的材料.让他们在动手操作中学生经历了“独立探究圆锥体积的算法、交流中比较体会圆锥与圆柱体积的关系”的过程。这一系列活动,让抽象的概念变的生动形象。 通过这样的步骤让学生在操作中体验,在操作中发现,学生学得兴趣盎然,不但主动地掌握了数学知识,还感受到发现和探索知识的乐趣。 使他们亲身体验探讨问题和寻求结论的过程,增进学生对数学现象的体验。

《圆锥体积》教学反思14

  对于《圆锥体积》的教学,我前些年按传统的教法:用空心圆柱、圆锥装沙的实验,得出圆锥体积的计算公式,的确有不妥之处,其一用“容积”偷换“体积”的概念,淡化了学生对“体积”的理解。其二在实验中,把“容积”看作近似地等于“体积”有失科学的严密性,对培养学生严谨的科学态度不利。由于自己的守旧,一直没能突破,没想到今日的突破收到意想不到的效果。也引发我的进一步思考:

  1、在日常的教学中,我们教师常常提醒学生,学习不能死守书本、不知变化、人云我云,要不拘泥、不守旧。那么我们教师自己更应该打破条条框框、突破教材、创造性的灵活地使用教材。

  2、陶行知先生倡导“手脑联盟”,他说“人生两个宝,双手和大脑”就是要学生手脑并用。在小学数学教学中,如果我们教师能给学生创造人人参与,既动手又动脑的情景,就能最大限度的激发学生的学习兴趣,激发学生的创新思维。让不同的学生在活动中得到不同的发展。

  3、实验后的交流是培养学生思维的有力的催化剂。在交流中,学生通过比较、思考,加深了对公式的理解,不仅理解了圆柱体和圆锥体之间的关系,而且培养了学生的思维能力、表达能力、概括能力。

  总之,我们教师只有在教学活动中,努力创造条件,让学生主动参与、发现和揭示数学原理和方法,我们的数学课堂就一定能生成更多的精彩!

《圆锥体积》教学反思15

  圆锥的体积是在学生掌握了圆锥的认识和圆柱的体积计算的基础上教学的,是小学几何初步知识教学的重要内容。本课的设计主要做到了以下几点:

  1.大胆猜测,培养猜测意识。假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学设计中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,让学生大胆猜想它们的体积可能会有什么样的关系,这样设计不仅仅能够培养学生的猜测意识,更重要的是能够充分调动所有学生的积极性,激起大家的探究愿望。

  2.操作验证,培养科学的实验观。数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。教学设计中,注重引导学生通过自主探究实验得出结论,让学生明确圆锥的体积是与这个圆锥等底等高的圆柱体积Sh的三分之一,从而总结出圆锥体积的计算公式V=三分之一Sh。

【《圆锥体积》教学反思15篇】相关文章:

有关圆锥体积教学课件09-21

圆锥的体积说课稿10篇11-08

圆柱的体积教学反思15篇03-28

圆柱的体积10-12

长方体的体积教学设计(11篇)02-21

长方体的体积教学设计11篇02-10

圆柱的体积说课稿11-08

圆柱和圆锥教案5篇02-28

《圆柱的体积一》说课稿12-01

圆柱体体积说课稿01-11