圆锥的体积教学反思

时间:2021-06-15 18:52:09 教学反思 我要投稿

圆锥的体积优秀教学反思(通用5篇)

  作为一名到岗不久的老师,教学是重要的任务之一,我们可以把教学过程中的感悟记录在教学反思中,那么写教学反思需要注意哪些问题呢?下面是小编为大家收集的圆锥的体积优秀教学反思(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。

圆锥的体积优秀教学反思(通用5篇)

  圆锥的体积教学反思1

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  《圆锥》这节课,其教学目标是:

  1)、认识圆锥,了解圆锥的底面、侧面和高;

  2)、掌握圆锥高的测量方法;

  3)、圆锥体积公式的推导;

  4)、通过例一例二使学生会应用圆锥公式进行简单的计算。

  教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3。14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。

  教学需要学习,教学更需要反思,在反思中进步,在反思中提高。

  圆锥的体积教学反思2

  就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同,没有采用“转化”的思想。因而这节课首先出示例5,让学生从图画直观上感受——圆锥体的体积比等底等。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同,没有采用“转化”的思想。因而这节课首先出示例5,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生猜想该圆锥的体积是圆柱的几分之几。当然这里教师并不追究学生猜想的是否准确,可以说1/2,1/3,或其它的分数都可以。,关键在猜想的基础上让他们明白,估计的结果一定要经过验证才能确认或修正。

  让他们明白“估计——验证”是解决问题的一种策略。因而,在估计的基础上,我再让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。

  圆锥的.体积教学反思3

  以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。

  圆锥的体积教学反思4

  以前教学圆锥的体积时,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳。

  学生对“等底等高”这一重要条件掌握并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我在六年级(6)班设计了这样的教学片断:让学生自选空圆柱和圆锥,研究圆柱和圆锥体积之间的关系,学生通过动手操作,得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一的。

  思维也出现了激烈的碰撞。这时,我没有评判结果,而是让学生经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是灵活机智地利用“错误”这一资源所产生的效果。

  在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题,让他们去几经碰壁,终于找到解决问题的方法。把思考问题的实际过程展现给学生,让学生经历思维的碰撞。这样做实际上是非常富于启发性的。学生做数学题不仅要学会这道题的解法,而且更要懂得这个解法的来历。

  教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,有效利用“错误”这一资源,勇于、乐于为学生创造时机,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验。这样,我们的课堂才是学生成长和成功的乐园!

  圆锥的体积教学反思5

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。

【圆锥的体积优秀教学反思(通用5篇)】相关文章:

有关圆锥体积教学课件09-21

圆锥的体积说课稿10篇11-08

圆锥的体积说课稿10篇11-08

圆锥的体积评课稿01-28

圆锥的体积评课稿(3篇)01-30

圆锥的体积评课稿3篇01-28

圆锥的体积评课稿集锦3篇01-30

圆柱的体积教学反思15篇03-28

幼儿大班的优秀教学反思(通用5篇)12-28

篮球课后优秀教学反思(通用6篇)12-28