圆柱的侧面积和表面积教学反思

时间:2023-01-04 18:25:31 教学反思 我要投稿
  • 相关推荐

圆柱的侧面积和表面积教学反思

  身为一名刚到岗的人民教师,课堂教学是重要的工作之一,通过教学反思可以快速积累我们的教学经验,我们该怎么去写教学反思呢?以下是小编为大家整理的圆柱的侧面积和表面积教学反思,仅供参考,希望能够帮助到大家。

圆柱的侧面积和表面积教学反思

圆柱的侧面积和表面积教学反思1

  本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  根据教学内容的特点和我班学生的实际,本节课的教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的空间观念和解决实际问题的能力。

  1、把握重点,突破难点,合理利用教材

  本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

  2、直观演示和实际操作相结合

  通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。

  3、讲解与练习相结合

  本节课,我改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

  4、还要进一步加强学生解决问题能力的培养。

  学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。

圆柱的侧面积和表面积教学反思2

  圆柱体的表面积是学生学了长方形、正方形、平行四边形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到曲线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习-圆柱体的表面积是学生学了长方形、正方形、平行四形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习的方法注入了新的内容,并使得学生的空间观念得到了进一步的`发展。

  图形的学习对于学生来说是一个抽象的知识,只有结合生活,练习生活,让学生亲眼去看一看,亲手去做

  一做,亲自去想一想,才能使之成为具体的、可接受的知识。本节课的教学设计分为三个层次。教学层次非常清晰。

  第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。

  第二层次:推导圆柱体的侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。

  第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。

  郑老师极其注重数学知识生活化。一方面,注重从生活现象中提取数学知识,引入数学学习;另一方面在学生掌握了一定知识后,及时应用所学知识解决生活中的问题,也可以说数学的回归。比如练习中帽子、通风管表面积的计算等,我想如果给足时间,数学知识的回归在这些课上有更多的体现和应用。在六年级的课堂上,郑老师注重学生的探究活动是很明显的。以学生为中心,以学生的主动探究为主,

  让学生敢想、敢说,从而主动的去获取知识。同时,注重操作活动在图形学习中的地位。操作是学生认识图形、探究图形特征的重要途径,正是操作活动,学生的探索学习才能得到顺利展开,也正是操作活动,学生对有关数学知识的体验更加真切和深刻。最后,郑老师注重学生的思维表述。如果说操作活动能更强调知识的深刻性,

  那么语言表述也就是说,就是对知识的梳理,知识的罗列,知识的系统话整理和知识的重组。

  整堂课也有值得探讨的地方。语言的衔接稍有跳跃。课堂的连接语是课堂驾驭能力的表现,也反映了教师

  设计课堂,生成课堂之间的一种应变。同时,这也与教师对于教学设计过程的熟悉程度有关。

圆柱的侧面积和表面积教学反思3

  1、直观演示和实际操作相结合

  新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

圆柱的侧面积和表面积教学反思4

  本节课的教学,同学们学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。主要体现在三个重视上:

  1、重视学习内容的生活性

  数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的有效方法。在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。

  2、重视学习主体的创造性

  著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。

  3、重视学习过程的实践性

  创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。本节课的第二环节让学生在动手操作中发现圆柱侧面展开的三种情形,在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

圆柱的侧面积和表面积教学反思5

  圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

  接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

  圆柱的侧面积和表面积:

  沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为平面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的高h。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即

  s圆柱侧=ch=2πrh(r为圆柱底面的半径),圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即s圆柱表=s圆柱侧+2s底=2πrh+2πr2。

  教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。

  学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:s=2πrh,是求();s= 2πrh+πr2,是求();s=2πrh+2πr2,是求()。

  《圆柱的侧面积和表面积》教学片段:

  在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

  我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

  1、求铅笔涂漆部分的面积是求()的面积。

  2、压路机滚动一周压过多大路面是求()的面积。

  3、求一个水桶用多少材料是求()的面积。

  4、求汽油桶用多少铁皮是求()的面积。

【圆柱的侧面积和表面积教学反思】相关文章:

《圆柱的认识和表面积》教学反思06-27

《圆柱的表面积》教学反思10-19

《圆柱的表面积》教学反思05-09

圆柱的表面积教学反思04-18

《圆柱表面积》的教学反思07-04

圆柱的表面积的教学反思07-04

圆柱的表面积教学反思06-14

《圆柱的表面积》教学反思06-19

《圆柱表面积》教学反思04-21