式与方程教学反思

时间:2023-04-10 18:33:51 教学反思 我要投稿

式与方程教学反思

  身为一名刚到岗的人民教师,教学是重要的任务之一,教学反思能很好的记录下我们的课堂经验,写教学反思需要注意哪些格式呢?下面是小编为大家整理的式与方程教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

式与方程教学反思

式与方程教学反思1

  《方程的意义》这一课的教学。难点是区分“等式”和“方程”,建立方程的数模模型在脑中。

  事先我曾经试教用天平来为学生建立等式模型,效果比较好,后进生也能理解方程的意义,但是会出现使用方程的过程中,经常会产生误差,学生就经常误解方程是不相等的。

  为了解决这一误解我就尝试着用跷跷板做游戏来让他们感受同等的等量关系,用文字来陈述第三种情境,让他们感受到大于、小于、等于关系。学生的兴趣此时如我所料确实比较高,可是我忽视了后进生,用这三种情境太过于抽象,让基础薄弱的学生不一定能立马反应过来。经过万主任的点拨,我好好的思考后我觉得应该给他们把天平和跷跷板同时呈现,用形象的图片呈现三种情境,他们的数模才会更容易建立。

  第二环节的巩固新知识时候,我让学生小组讨论被墨汁挡住的式子是否是方程时候,我回头想想我有点操之过急,我应该让他们先从基础的辨析后再来做这题,然后渗透集合思想让他们区分方程,这样这题的回答可能会更加的出彩。

  第三个知识深入时候,看图列式我也应该更加明确告知学生式子的要求。也就是因为前面的起点太高,所以一些后进生把题意理解错误,使答题不够准确。

  总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的'交流、讨论,主动构建自己的认知结构,调动了学生的学习热情,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。在今后的教学中:我应该注意后进生,尽量多多从基础出发,注意帮助学生建立数学模型,更要把数学思想时刻灌输的课堂中。

式与方程教学反思2

  《方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。

  回顾教学过程,我认为有如下几个特点。

  一、复习导入,激趣揭题

  该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

  二、实践操作,建立方程模型

  本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的.特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。

  三、回归生活,体会方程

  在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

  四、教学中的不足

  1、从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。

  2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。

  3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。

  五、改进措施

  在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。

式与方程教学反思3

  方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。

  根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的'意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。

式与方程教学反思4

  《抛物线及其标准方程》是人教版高中数学(选修2—1)中的内容,适用对象是高二年级理科的学生。学生在初中阶段所学的二次函数中,已经初步接触过抛物线。通过本节课的学习,可以让学生进一步了解抛物线所形成的几何本质。在研究椭圆和双曲线的基础上,通过类比来研究抛物线的定义和标准方程,让学生进一步掌握研究曲的基本方法,并为他们今后学习解析几何奠定良好的基础。

  本课在新课标思想的指导下,结合前后的知识内容及学生的特点和认知规律,创设情境,激发学生学习兴趣,教师现场用几何画板进行演示,让学生对抛物线由感性认识开始,归纳出抛物线的定义,逐步上升到理性认识,并根据定义推导抛物线的标准方程。在课堂教学中,充分发挥多媒体的资源优势,利用计算机作为辅助手段,动态演示抛物线的图像,激发学生学习兴趣,有效地协助完成了师生探究活动。充分将信息技术和学科教学有机地整合起来,有利于突出重点、突破难点,有利于教学目标的实现,使学生对所学知识得以深化。充分体现学生的主体地位,让学生成为学习的主人。

  在教学中结合新课标的思想,从三个维度出发,制定如下的教学目标:由实例感知,得出抛物线的`定义,并推导出其标准方程,在实际应用中进一步体会数形结合的思想。 使学生了解抛物线的定义、几何图形和标准方程;知道它们的简单几何性质;使用抛物线的定义求抛物线的标准方程,焦点坐标,准线方程。

  同时能使学生初步根据抛物线的特征选择不同的解决问题的方法。体会抛物线在生活中的应用,学会在生活中用数学的方法去解释生活中的问题。了解抛物线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。通过设置丰富的问题情境,鼓励从多角度思考、探索、交流,激发学生的好奇心和主动学习的欲望;通过抛物线的定义及其标准方程的学习,进一步体会数形结合的思想, 养成利用数形结合解决问题的习惯。

  不足之处:课堂容量稍显大些,给学生自己思考的时间空间不够。

【式与方程教学反思】相关文章:

《式与方程》教学反思06-17

式与方程教学反思07-04

《式与方程》教学反思07-12

《式与方程》教学反思06-21

式与方程教学反思范文07-04

《式与方程》教学反思范文07-04

《式与方程》教学反思15篇06-21

《式与方程的复习》教学反思范文06-22

式与方程教学反思三篇08-30