沪教版七年级数学一元一次方程及其解法的教学计划

时间:2024-12-05 14:19:30 诗琳 教学计划 我要投稿
  • 相关推荐

沪教版七年级数学一元一次方程及其解法的教学计划(精选11篇)

  日子如同白驹过隙,不经意间,我们迎来了新的学习生活,请一起努力,写一份教学计划吧。那么如何输出一份打动人心的教学计划呢?以下是小编帮大家整理的沪教版七年级数学一元一次方程及其解法的教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

沪教版七年级数学一元一次方程及其解法的教学计划(精选11篇)

  沪教版七年级数学一元一次方程及其解法的教学计划 1

  教学目标

  知识技能

  1、能根据具体问题的实际意义,检验根的合理性。

  2、会利用试误的方法比较两个代数式的大小关系。

  数学思考

  能结合实际问题背景发现和提出数学问题。

  解决问题

  学会列一元一次方程解决实际问题。

  情感态度

  1、 能根据实际问题中的`等量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

  2、 学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。

  重点

  利用一元一次方程解决实际问题。

  难点

  在实际问题背景下,如何选择恰当未知数解决实际问题。

  教学流程安排

  活动流程图

  活动内容和目的

  活动一 利用一元一次方程解决购票问题。

  活动二 利用一元一次方程解决购灯问题。

  小结

  布置作业

  活动1:由学生感兴趣的例子引入新课,可以吸引学生更积极的投入课堂!同时利用从感受到猜测,再到验证的数学方法令学生学会利用数学建模的思想来解决问题

  活动2:在上一个问题解决的基础上,更进一步的利用一元一次方程来解决问题。

  小结:由学生去梳理整个一节课的内容和数学学习方法。教师明晰。

  布置作业:将本节课的知识延伸到课外

  沪教版七年级数学一元一次方程及其解法的教学计划 2

  教学目标

  1、学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.

  2、通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.

  3、让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。

  教学难点

  把生活中的实际问题抽象出数学问题。

  知识重点

  引导学生弄清题意,设计出各类问题的最佳方案

  教学过程

  (师生活动)设计理念

  提出问题问题:小江一家三口准备国庆节外出旅游.现有两家

  旅行社,它们的收费标准分别为:甲旅行社:大人全价,小孩半价;乙旅行社:不管大人小孩,一律八折.这两家旅行社的基本价一样.你认为应该选择哪家旅行社较为合算?

  由学生完成选择旅行社的方案。从学生比较感兴趣的实际生活问题,引入新课,并由学生自己设计出选择旅行社的方案,为新授哪种灯省钱埋下伏笔。

  分析问题出示教科书94页探究2:用哪种灯省钱?

  师生共同探讨完成下列问题:

  1、上述问题中基本等量关系有哪些?

  (费用=灯的售价+电费,电费=0.5×灯的功率(千

  瓦)×照明时间(时)

  2、列式表示两种灯的费用各为多少?

  (节能灯用t小时的费用(元)为:60+0.5×0-O.11t

  白炽灯用t小时的费用(元)为:3十0.06×0.5t)

  3、当照明时间t取何值时,(1)白炽灯比节能灯省钱,

  (2)节能灯比白炽灯省钱?(3)白炽灯与节能灯费用一样?(精确到1小时)

  4、如果计划照明3500小时,则需要购买两个灯,试设计你认为能省钱的选灯方案。

  以课本例题中实际生活问题为素材,使学生感受数学来源于生活,激发学生学数学的兴趣,师生共同参与合作完成问题中的探讨的几个问题,体现了以学生为主体,教师作为问题解决的组织者,引导者,合作者的新课程教育理念。

  合作交流

  探索创新下面问题是学生课前调查到的与人们生活密切相关的实际问题,每一大组完成一个,分四个小组讨论后设计出最佳方案。

  10分钟后,大组派代表交流发言.

  1、电价问题

  据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的'最佳方案.

  2、水费问题

  我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.

  问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)

  (2)根据你家用水情况,设计出最佳用水方案.

  3、用气问题

  某市按下列规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米o.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.

  4、电信支费

  随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.

  (1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.

  (2)某移动通讯公司升级了两种通讯业务,“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元.,

  根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。

  小结与作业

  课堂小结可用教师对各小组交流的方案进行简单的评价作为小结。

  布置作业1、必做题:课本第98页习题2.4第5、7题

  2、选做题:

  (1)我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准,A市规定每户每月的标准用水量不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费.该市张大爷家5月份用水9立方米,需交费16.2元.A市规定的每户每月标准用水量是多少立方米?

  (2)2002年世界杯足球赛韩国组委会公布的四分之一决赛门票价格是:一等席300美元,二等席200美元,三等席125元美元,某服装公司在促销活动中,组织获得特等奖、一等奖的名顾客到韩国现看2002年世界杯足球赛四分之一决赛,除去其他费用后,计划买两种门票,用完5025美元,你能设计出几种购票方案供该服装公司选择吗?说明理由

  分层次布置作业。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  本课以生活中的实际问题引入,以学生为主体,师生共同合作参与完成例中设计的

  几个问题,教师在学生接受新知识的过程中,起到了一个组织者、合作者、引导者的角色.学生的学习始终是主动的通过学生课前的社会调查,对生活中的一些方案以开放形式设计问题,学生通过小组合作交流,设计出不同的方案,让学生在生动活泼的交流情境中感受到数学的应用价值,产生对数学的兴趣.同时养成认真倾听他人发言的习惯,感受与同伴交流想法的乐趣.通过用电、用水最佳方案的设计,培养学生节约用电、用水的意识.

  沪教版七年级数学一元一次方程及其解法的教学计划 3

  一、学生起点分析:

  通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.

  二、教学任务分析:

  本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.

  三、教学目标:

  知识与技能:

  1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.

  2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.

  过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.

  情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.

  四、教学过程设计:

  环节一 创设情景,引入新课

  内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.

  考虑几个问题:

  1、 手里的橡皮泥在手压前和手压后有何变化?

  2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

  3、在这个变化过程中,是否有不变的量?是什么没变?

  目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.

  学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.

  环节二:运用情景,解决问题

  内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

  目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.

  实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.

  锻压前 锻压后

  底面半径 5cm 10cm

  高 36cm xcm

  体积 π×25×36 π×100?x

  由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.

  解:设锻压后的圆柱的高为xcm,由题意得

  π×25×36=π×100?x.

  解之得 x=9.

  此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

  (1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;

  (2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.

  过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.

  分析: 锻压前 锻压后

  底面半径 5cm 长acm, 宽bcm

  高 36cm xcm

  体积 π×25×36 abx

  环节三:操作实践,发现规律

  内容:学生用预先准备好的'40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

  目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.

  实际效果:

  长(cm) 宽(cm) 面积(cm2)

  长方形1 15 5 75

  长方形2 13.6 6.4 86.4

  长方形3 12.8 7.3 93.44

  长方形4 11.6 8.4 97.44

  长方形5 11 9 99

  长方形6 10 10 100

  由学生的实际操作得到的近似值已反映出来一个很好的规律.

  学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.

  过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.

  环节四:练一练,体验数学模型

  内容:课本例题

  目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.

  例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.

  (1)此时长方形的长和宽各为多少米?

  (2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

  (3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

  实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.

  环节五:课堂小结

  1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.

  2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验、

  3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.

  环节六:布置作业

  沪教版七年级数学一元一次方程及其解法的教学计划 4

  一、教学目标

  1、知识技能目标:

  (1)、了解“去括号”是解方程的重要步骤。

  (2)、准确而熟练地运用去括号法则解带有括号的一元一次方程。

  2、能力目标

  (1)学会对所学过的知识进行整理和归纳;进一步发展学生抽象概括的能力。

  (2)准确而熟练地运用去括号法则解带有括号的方程。

  (3)学会利用列一元一次方程去解决有关数学问题,进一步发展学生的实践能力。

  3、情感目标

  (1)通过问题的探究,激发学生的好奇心和求知欲,让学生主动参与教学活动,从而让学生形成主动了解数学、应用数学的态度。

  (2)通过合并同类项、移项、去括号的法则的复习,引导学生对知识的整理和归纳,并在运用数学知识解决问题的.活动中让学生获取成功的体验,从而建立学习的自信心。

  二、教学重点

  重点:了解“去括号”是解方程的重要步骤。

  难点:括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项。

  三、教学过程

  【活动一】温故而知新(多媒体展示)

  填 空

  1.去括号法则是: 负变正不变 ;

  2.化简下列各式:

  (1)a (b+c)= ab+ac ;

  (2) 7(x-1)= 7x-7 ;

  (3) -2(x+3)=-2x-6 ;

  (4) -(x-1.5)=-x+1.5 ;

  3.合并同类项法则: (同类项)系数相加,字母(部分)不变 ;

  4.合并同类项。

  (1)、 2x-3x= -x ;

  (2) 、3x-2(x-1.5)= x+3 ;

  (3)、 2a+3(5-4a)= 15-10a ;

  (4)、-3[1-3(x-1)]= 9x-12 ;

  5.解一元一次方程的一般步骤是: 移项、合并同同类项、系数化为1; 6.方程5x-2x=9的解是 x=3 ;

  7.方程8x-19=6x-9的解是 x=5 ;

  8. 说说下列这个方程和我们以前学的方程有什么不同?你会解下列方程 吗?

  3x-7(x-1)=3-2(x-3)

  出示课题:3.3解一元一次方程(二)---去括号

  【活动二】探究新知(多媒体展示)

  1.P96.问题:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

  ◆你会用方程解决这个问题吗?

  分析:设上半年每月平均用电x度,则下半年每月平均用电 (x-2000 度;

  上半年共用电 6x 度;

  下半年共用电 6(x-2000)度。

  根据全年用电15万度,可列方程

  6x+6(x-2000)=150000 。

  去括号,得: 6x+6x-12000=150000 ,移项,得: 6x+6x=150000+12000

  合并同类项,得:12x=1620000 ,系数化为1,得 : x=13500 。

  由上可知,这个工厂上半年每月平均用电13500度

  2.思考:本题还有其他列方程的方法吗?

  用其他方法列出的方程应该怎样解?

  3. ◆小结:目前我们解含有括号的一元一次方程的一般步骤是:

  去括号——移项——合并同类项——系数化为一

  【活动三】范例学习(多媒体展示)

  例1:解方程 3x-7(x-1)=3-2(x+3)。

  解:去括号,得:

  移项,得:

  合并同类项,得:

  系数化为1,得 :

  【活动四】随堂练习(多媒体展示)

  1 解下列方程

  (1). 5x+(2-4x)=0 (2).8y-3(3y+2)=6

  (3).4x+3(2x-3)=12-(x+4) (4).1+2[1-3(x-1)]=4x

  ◆小结。 在同一个方程中如果遇到多层括号一般由里到外,逐层去括号。

  【活动五】新知应用,拓展提升。(练习册P49—P50)(多媒体展示)

  1.方程4(2-x)-3(x+1)=6的解是 ( C )

  A. x=7; B. C. D.x=-7

  2.若方程3x+(2a+1)=x-(3a+2)的解是0,则a的值等于( D )

  A. B. C. D. 3.代数式5a+4与3(a+4)互为相反数,则a的值是 ( B )

  A. -1 ; B. -2; C. 1 ; D. 2.

  4.目前我省小学和初中在校生共136万人,其中小学在校生人数比初中生在校生人数的2倍少2万人,目前我省初中在校生有 46 万人。

  5.(1)若x=4时,代数式5(x+b)-10与(b+4)x的值相等,则b= 6 。

  (2)当m= 16 时,方程5x+4=4x-3和2(x+1)-m=-2(m-2)的解相同。

  6、 列方程求解:

  (1)当x= 0 时,代数式 2(3x+7)和 14-10.5x的值相等?

  (2)、当y= 10 时,代数式2(3y+4)的值比5(2y-7)的值大3?

  【活动六】总结提炼:(多媒体展示)

  1.说说你的收获

  2. 目前我们解含有括号的一元一次方程的一般步骤是:

  去括号——移项——合并同类项——系数化为1

  3.去括号时要注意什么?注意:

  (1)当括号前是“-”号,去括号时,各项都要变号。

  (2)括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号。

  (3)在同一个方程中如果遇到多层括号一般由里到外,逐层去括号。 4.你还有何疑惑?

  【巩固练习】 (多媒体展示)

  A组 解方程:

  (1)5(x+2)=2(5x-1) (2)4x+3=2(x-1)+1

  (3)(x+1)-2(x-1)=1-3x (4)2(x-1)-(x+2)=3(4-x)

  B组:已知 A= 3x+2, B=4+2x

  ① 当x取何值时, A=2B;

  ② 当x取何值时, 3A=1-2B

  C组 列方程求解:

  (1)当x取何值时,代数式4x-5与3x-6的值互为相反数?

  (2)一架飞机在两城之间飞行,风速为24千米/时。顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程。

  沪教版七年级数学一元一次方程及其解法的教学计划 5

  教学目标

  1、了解方程的概念和一元一次方程的概念;

  2、知道什么是解方程,会检验某个值是不是方程的解;

  3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

  教学重点

  1、一元一次方程的概念及方程的解;

  2、能验证一个数是否是一个方程的解。

  教学难点

  寻找问题中的等量关系,列出方程。

  教学过程

  一、情景诱导

  同学们:世界上最大的动物是蓝鲸,一头蓝鲸重124t,比一头大象体重的25倍少1t,你能计算出这头大象的体重吗?

  如果设大象的体重为x t,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

  要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

  二、自学指导

  学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

  附:自学提纲: 1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

  2、什么是一元一次方程?请举出1—2个例子。

  3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

  4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

  5、什么是解方程?

  三、展示归纳

  1、请有问题的.同学逐个回答自学提纲中的问题,生说师写;

  2、发动学生进行评价、补充、完善;

  3、教师根据展示情况进行必要的讲解和强调。

  四、变式练习

  1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

  附:变式练习

  1、下列各式中,哪些是一元一次方程?

  (1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1

  (7) 《3.1.1一元一次方程》教学设计(修改稿和原稿) =1

  2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。

  3、已知关于X的方程2X 《3.1.1一元一次方程》教学设计(修改稿和原稿) +3=0为一元一次方程,求k的值。

  4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是

  5、设某数为x,根据题意列出方程,不必求解:

  (1)某数比它的2倍小3;

  (2)某数与5的差比它的2倍少11;

  (3)把某数增加它的10%后恰为80.

  6、若x=1是方程kx-1=0的解,则k= .

  五、课堂小结

  通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。

  六、布置作业

  课本83页习题3.1 第1题。

  沪教版七年级数学一元一次方程及其解法的教学计划 6

  学习目标:

  1、进一步经历运用方程解决实际问题的过程。

  2、提高学生找等量关系列方程的能力。

  3、培养学生的抽象、概括、分析和解决问题的能力。

  4、学会用数学的眼光去看待、分析现实生活中的情景。

  重点:

  1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.

  2. 解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。

  难点:

  如何从实际问题中寻找等量关系建立方程.

  学习指导:

  一、知识准备

  1.通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。

  2.谈一谈:

  请举例说明打折、利润、利润率、提价及削价的含义分别是什么?

  3.算一算:

  (1)原价100元的'商品,打8折后价格为 元;

  (2)原价100元的商品,提价40%后的价格为 元;

  (3)进价100元的商品,以150元卖出,利润是 元。

  二、学习新课

  一、思考:

  1、把下面的“折扣”数改写成百分数。九折 八八折 七五折

  2、你是怎样理解某种商品打“八折”出售的?

  二、问题:1、 说说“打折销售”中自己有过的亲身经历。

  2、假设你是一个商店老板,你的追求是什么?

  3、你是怎样理解商品的利润?

  三、 新知探讨

  1 、你认为商品的标价、折数与商品的卖价之间有怎样的关系?

  2、结合实际,说说你从打折销售中可以获得哪些数学问题?

  (1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?

  (2)一种画册原价每本16元,现在按每本11.2元出售。这种画册按原价打了几折?

  (3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?

  (4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?

  2、例题:一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

  如果设每件服装的成本价为x元,根据题意,

  (1)每件服装的标价为:( )

  (2)每件服装的实际售价为:( )

  (3)每件服装的利润为:( )

  (4)列出方程,并解答:

  四、回顾与反思通过这节课的学习,你最大的收获是什么?在调查中你还遇到哪些难解的问题,看看大家是不是可以给你解答?

  作业:

  作业纸。

  沪教版七年级数学一元一次方程及其解法的教学计划 7

  学习目标

  1. 了解一元一次方程及其相关概念

  2. 掌握等式的性质,理解掌握移项法则

  3. 会用等式的性质解一元一 次昂成(数字系数),掌握解一元一次方程的基本方法

  4. 能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方 程和解释结果的'实际意义及合理性,提高分析问题、解决问题的能力

  5. 初步学会用方程的思想思考问 题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结 现实情境中的实际问题。

  难点重点:

  解方程、用方程解决 实际问题

  难点:用方程解决 实际问题

  教学流程

  一、结合课本112页知识结构图和回顾与思 考中的问题,复习本章的知识点,形成框架,巩固重点知识

  二、典例回顾

  1.一元一次方程的概念:

  例1.试判断下列方程是否为一元一次方程.

  (1).x=5 (2). x2+3x=2 (3) .2x+3y=5

  2.一元一次方程的解(根 ):

  判断下列x值是否为方程 3x-5=6x+4 的解.

  (1).x =3 (2)x=3

  3.解一 元一次方程的基本 思路 :

  4.解决问题的基本步骤

  例5:整理一批 图书,由一个人做要40小 时。现在计划由一部分人先做4小 时,再增加2人和他们一起做8小时,完成这项工作。假设这些人 的工作效率下共同, 具体 应先安排多少人工作?

  解:设先安排x人工作4小时。根据两段 工作量之和应是总工作量,由此,列方程:

  去分母,得 4x+8(x+2) =40

  去括号,得 4x+8x+16=40

  移项及合并,得12x=24

  系数化为1, 得x=2

  答:应先安排2名工人工作4小 时.

  注意:工作量=人均效率人数时间

  本题的关键是 要人均效率与人数和时 间之间的数量关系.

  三、基础训练:课本第113页第1.2.3题.

  四 、综合训练:课本113页至114页4.5.6.7.8

  五、达标训练:3.7

  五、课堂小结: 收获了哪些?还有哪些需要再学习?

  沪教版七年级数学一元一次方程及其解法的教学计划 8

  学习目标

  1. 了解一元一次方程及其相关概念

  2. 掌握等式的性质,理解掌握移项法则

  3. 会用等式的性质解一元一 次昂成(数字系数),掌握解一元一次方程的基本方法

  4. 能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方 程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力

  5. 初步学会用方程的思想思考问 题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结 现实情境中的实际问题。

  重点

  难点 重点:解方程、用方程解决 实际问题

  难点:用方程解决 实际问题

  教学流程

  师生活动 时间 复备标注

  一、结合课本112页知识结构图和回顾与思 考中的`问题,复习本章的知识点,形成框架,巩固重点知识

  二、典 例回顾

  1.一元一次方程的概念:

  例1.试判断下列方程是否为一元一次方程.

  (1).x=5 (2). x2+3x=2 (3) .2x+3y=5

  2.一元一次方程的解(根 ):

  判断下列x值是否为方程 3x-5=6x+4 的解.

  (1).x =3 (2)x=3

  3.解一 元一次方程的基本 思路 :

  4.解决问题的基本步骤

  例5:整理一批 图书,由一个人做要40小 时。现在计划由一部分人先做4小 时,再增加2人和他们一起做8小时,完成这项工作。假设这些人 的工作效率下共同, 具体 应先安排多少人工作?

  解:设先安排x人工作4小时。根据两段 工作量之和应是总工作量,由此,列方程:

  去分母,得 4x+8(x+2) =40

  去括号,得 4x+8x+16=40

  移项及合并,得12x=24

  系数化为1, 得x=2

  答:应先安排2名工人工作4小 时.

  注意:工作量=人均效率人数时间

  本题的关键是 要人均效率与人数和时 间之间的数量关系.

  三、基础训练:课本第113页第1.2.3题.

  四 、综合训练:课本113页至114页4.5.6.7.8

  五、达标训练:3.7

  五、课堂小结: 收获了哪些?还有哪些需要再学习?

  学生作业

  课件出示 问题明确 知识要点

  学生练习基础上,教师点拨

  沪教版七年级数学一元一次方程及其解法的教学计划 9

  一、教学目标:

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义,数学教案-一元一次方程。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程

  1、课前训练一

  (1)如果 | 40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程( )

  A、 B、 C、 D、 00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:( )

  A、 +25=310 B、 +( +25)=310 C、2 [ +( +25)]=310 D、[ +( +25)] 2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元,初中数学教案《数学教案-一元一次方程》。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

  解:设每个练习本要 元,则每个笔记本要 元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是( )

  A、 B、 C、 D、

  (2)下列方程中,属于一元一次方程的.是( )

  A、 B、 C、 D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了 场,则平了 场,依题意可列得方程:

  解得 =

  答:甲队胜了 场,平了 场。

  (4)根据条件“一个数 比它的一半大2”可列得方程为

  (5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为

  四、课外作业

  P151习题5.1

  沪教版七年级数学一元一次方程及其解法的教学计划 10

  教学目标:

  1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。

  2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。

  3、情感、态度与价值观:通过尝试从不同角度寻求解决问题的方法,体会解决问题策略的多样性;在解一元一次放的过程中,体验“化归”的思想。

  教学重难点:

  重点:解一元一次方程的基本步骤和方法。

  难点:含有分母的一元一次方程的解题方法。

  教学过程:

  一、新课导入:

  请同学们和老师一起解方程:

  并回答:解一元一次方程的一般步骤和最终的目的是什么?

  二、讲授新课

  请给同学们介绍纸草书(P95)。

  问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.试问这个

  数是多少?

  并引入让同学运用设未知数的方法,列出相应的方程。

  并回答:这个方程和我们以前学习的方程有什么不同?

  同学们和老师一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活动:同学们,解一元一次方程的步骤有哪些?要注意哪些?

  看一看你会不会错:

  (1)解方程:

  (2)解方程:

  典型例题:解方程:

  想一想:去分母时要注意什么问题?

  (1)方程两边每一项都要乘以各分母的最小公倍数

  (2)去分母后如分子中含有两项,应将该分子添上括号

  选一选:

  练一练:当m为何值时,整式和的'值相等?

  议一议:如何解方程:

  注意区别:

  1、把分母中的小数化为整数是利用分数的基本性质,是对单一的一个分数的分子分母同乘或除以一个不为0的数,而不是对于整个方程的左右两边同乘或除以一个不为0的数。

  2、而去分母则是根据等式性质2,对方程的左右两边同乘或除以一个不为0的数,而不是对于一个单一的分数。

  课堂小结:

  (1)怎样去分母?应在方程的左右两边都乘以各分母的最小公倍数。

  有没有疑问:不是最小公倍数行不行?

  (2)去分母的依据是什么?

  等式性质2

  (3)去分母的注意点是什么?

  1、去分母时等式两边各项都要乘以最小公倍数,不可以漏乘。

  2、如果分子是含有未知数的代数式,其分子为一个整体应加括号。

  (4)解一元一次方程的一般步骤:

  布置作业:P98,习题3.3第3题

  补充作业:解方程:

  (1)

  (2)

  板书设计:

  教学反思:

  沪教版七年级数学一元一次方程及其解法的教学计划 11

  教学目的:

  理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。

  重点、难点

  1、 重点:弄清应用题题意列出方程。

  2、 难点:弄清应用题题意列出方程。

  教学过程

  一、复习

  1、 什么叫一元一次方程?

  2、 解一元一次方程的理论根据是什么?

  二、新授。

  例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的`盐的质量相等?

  先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。

  分析:设应从A盘内拿出盐x,可列表帮助分析。

  等量关系;A盘现有盐=B盘现有盐

  完成后,可让学生反思,检验所求出的解是否合理。

  (盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)

  培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。

  例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  引导学生弄清题意,疏理已知量和未知量:

  1、题目中有哪些已知量?

  (1)参加搬砖的初一同学和其他年级同学共65名。

  (2)初一同学每人搬6块,其他年级同学每人搬8块。

  (3)初一和其他年级同学一共搬了400块。

  2、求什么?

  初一同学有多少人参加搬砖?

  3、等量关系是什么?

  初一同学搬砖的块数十其他年级同学的搬砖数=400

  如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程

  6x+8(65-x)=400

  也可以按照教科书上的列表法分析

  三、巩固练习

  教科书第12页练习1、2、3

  第l题:可引导学生画线图分析

  等量关系是:AC十CB=400

  若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再

  由等量关系就可列出方程:

  6(65-x)+8x=400

  四、小结

  本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。

【沪教版七年级数学一元一次方程及其解法的教学计划】相关文章:

沪教版初一下册数学教学计划11-11

沪教版《动物的休眠》说课稿10-21

沪教版语文教案12-29

沪教版《绿》教学反思08-30

沪教版冰城教学设计06-13

沪教版《母校》教学反思10-17

沪教版《母校》的教学反思08-11

沪教版《论语》教案及习题03-22

《鸬鹚》沪教版教学设计09-24

沪教版七年级上册英语教学计划08-22