【精品】数学教学计划集合7篇
人生天地之间,若白驹过隙,忽然而已,相信大家对即将到来的工作生活满心期待吧!该好好计划一下接下来的教学工作了!你知道领导想要看到的是什么样的教学总结吗?以下是小编帮大家整理的数学教学计划9篇,欢迎大家分享。
数学教学计划 篇1
一、学情分析
经过一个学期的数学教学,两班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,两班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想
坚持贯彻党的教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析
本学期,除了要完成规定的所学内容二次函数、相似、锐角三角函数、投影与视图四章新课,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:实数与统计、方程与函数、解直角三角形、三角形、四边形、圆是中考的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋
势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:
(1)审题不清,不能正确理解题意;
(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;
(3)对所学知识综合应用能力不够;
(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
四、教学目标
态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。争取在中考中取得好成绩。
五、采取的措施
1、认真学习钻研新课标,熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;
2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;
3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;
4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;
5、积极与其他教师沟通,加强教研教改,提高教学水平;
6、经常听取学生良好的合理化建议;
7、以两头带中间的战略不变;
8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;
9、认真开展课内、课外活动,激发学生的学习兴趣。
10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。
数学教学计划 篇2
一、情况分析
本学期是本年级学生初中学习阶段的第二学期。新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据收集。现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。
二、目标要求
本学期的数学教学要从学生的实际问题出发,积极引导学生“观察”、“思考”、“探究”、“讨论”、“归纳”数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期末考试中力争生均分60分左右,合格率50%以上,并将低分率控制到10%以。
三、教学措施
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。
2、把握学生思想动态,及时与学生沟通,搞好师生关系。
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4、改进教学方法,用电脑,挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。
7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长。特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;
(2)积极思考,主动发言习惯;
(3)自主作业习惯;
(4)课后复习习惯。
8、改进阶段考试形式,改进评价方法,注重学习过程的评价,基础知识技能“推迟判断”,让学生有再次考试的机会,成功的喜悦,重视学生发现问题、解决问题的能力的评价。
四、教学进度
三月份:(1—5周,约30课时)
相交线与平行线、三角形结束新课。并进行阶段测试。
结束新课月考,初定在4月2日前后
四月份:(6—10周,约25课时)
平面直角坐标系、。并进行阶段复习。期中考试初定在4月28—29日。
五月份:(11—15周,约25课时)
二元一次方程组结束新课
不等式与不等式组结束新课。并进行阶段测试。
结束新课月考,初定在6月2日前后
六月份:(16—19周,约20课时)
数据收集结束新课,进入综合复习,并进行阶段测试。
初定在6月28—29日前后期末考试。
数学教学计划 篇3
一、教材简析
本单元的内容有:加法、减法和加减法的验算。
根据《标准》的要求,笔算加减法限定于三位数加减三位数,本单元主要教学三位数加减法。本单元是在二年级下册“万以内的加法和减法(一)”的基础上教学的。学生在二年级已经学习了几百几十加减几百几十的进位加法和退位减法,本单元主要学习三位数加减三位数中连续进位加和连续退位减。
本单元三个部分的教学改变了过去单纯出计算式题教学的形式,都是通过具体的生活问题和或者生活情境引出计算问题,并注意在练习中安排一定数量的应用问题,以加强计算教学与实际应用的联系,使学生感受计算教学与生活的联系,增强学生的应用意识。
根据《课标》提出的“加强估算、提倡算法多样化”的要求,加减法的教学均按照先估算、再计算的顺序安排,增强估算意识,培养数感,并结合部分例题,体现算法多样化。教材在编写时对法则不作全面呈现,仅在重点和关键处进行提示和引导,以体现合作学习方式在教学中的应用。
针对计算教学练习比较枯燥的问题,练习的安排加强与实际应用的联系,努力做到形式多样,并设计了一些思考和开放题,提高学习兴趣。
二、教学目标
1.使学生学会计算三位数加、减三位数。
2.使学生能够结合具体情境进行加减法的估算,进一步领会加减法估算的基本方法,增强估算意识。
3.理解验算的意义,会对加法和减法进行验算,初步形成检验和验算的习惯
4.使学生经历与他人交流各自算法的过程,学会与人合作学习
三、教学重点、难点
重点:
1、三位数加减三位数
2、掌握验算方法。
难点:
1、连续进位加法
2、连续退位减法
突破方法:
1、让学生通过解决实际问题来学习计算。
计算往往是和实际问题中引出的,教师可利用教材提供的背景,引出数学问题,学习数学方法,也可以利用身边熟悉的事例进行教学。
2、运用“迁移”的方法进行加减法的计算教学。
本单元是在学习了加减法的计算法则基础上学习的,在教学时可采用尝试、讨论等方式学习,发挥知识的迁移效力,体现学习自主性。
3、加强估算,培养估算意识和估算能力。
教材都安排了“先估计一下“的环节,同时也可以利用练习中提出的估算要求,培养估算意识和能力。
4、恰当、适时的运用合作学习方式。
教师要留给学生充足的时间交流探索和讨论。
课时安排:(共9课时)
1、加法…………………………………………3课时
2、减法…………………………………………3课时
3、加减法的验算………………………………2课时
4、整理和复习…………………………………1课时
数学教学计划 篇4
一、学生基本情况分析:
本学期共有学生40名,中等生约占60%,优生约占20%,反应迟钝、学习不用功的学生约占20%,总体看经过上学期的管理,学生纪律普遍好些,上课基本能认真听讲,但也有少部分不能积极动脑思考,发言不积极,作业书写不认真,有些学生不能按时完成家庭作业,有错不能主动改。
本班学生由于年龄、农村家庭环境等原因,导致本班学生差异较大,两极分化比较严重,给教学带来了一定的难度。在今后的教学中,联系学生生活经历充分发展学生自主探究学习的能力,培养质疑精神,致力于改变学生的学习方式,使学生乐意投入到数学活动中去。
二、教材分析:
这一册教材包括下面一些内容:位置与方向,除数是一位数的除法,简单的数据分析和平均数,年、月、日,两位数乘两位数,面积,小数的初步认识,用数学解决问题,数学广角和数学实践活动等。
三、教学目标:
1.会笔算多位数除以一位数的除法、两位数乘两位数的乘法,会进行相应的乘、除法估算和验算。
2.会口算除以一位数商是整十、整百、整千的数,整十、整百数乘整十数,两位数乘整十、整百数(每位乘积不满十)。
3.初步认识简单的小数(小数部分不超过两位),初步知道小数的含义,会读、写小数,初步认识小数的大小,会计算一位小数的加减法。
4.初步认识轴对称图形和对称轴。
5.认识面积的含义,能用自选单位估计和测量图形的面积,体会并认识面积单位(平方厘米、平方分米、平方米、平方千米、公顷),会进行简单的单位换算;掌握长方形、正方形的面积公式,会用公式正确计算长方形、正方形的面积,并能估计给定的长方形、正方形的面积。
6.认识时间单位年、月、日,了解它们之间的关系;知道各月以及全年的天数;知道24时计时法,会用24时计时法表示时刻。
7.了解不同形式的条形统计图,初步学会简单的数据分析;了解平均数的意义,会求简单数据的平均数(结果是整数);进一步体会统计在现实生活中的作用。
8.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
四、教学重点、难点:
教学重点:除数是一位数的除法、两位数乘两位数、面积以及简单的数据分析和平均数。
教学难点:
1、除数是一位数的除法中的试商方法及商的定位。
2、掌握两位数乘两位数计算法则。
3、长方形和正方形的面积计算。
五、提高教学质量的措施
1.注重培养学生灵活的计算能力,发展学生的数感。
2.提供丰富的空间与图形的教学内容,注重实践与探索,促进学生空间观念的发展。
3.结合现实问题教学简单的数据分析和平均数,加深学生对统计作用的认识,逐步形成统计观念。
4.加强解决问题能力的教学,培养学生综合运用数学知识解决问题的能力。
5.有步骤地渗透数学思想方法,培养学生数学思维能力。
6.情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。
六、教学进度表见教研室统一进度计划。
略
数学教学计划 篇5
学习目标:
一、计划宗旨
新学期开始了,为了更好的完成教学任务,全面的提高教学质量,培养学生的创新精神和创新能力,大面积提高学生的学习成绩,力争中考取得好成绩,特制定本计划如下
二、学情分析
上学期学生在计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展,但有一部分同学没有达到应该达到的发展高度,学生课外自主拓展知识的能力几乎没有,通过教育与训练培养,绝大部分学生能够认真对等每次作业,及时纠正作业中的错误,课堂上能专心致志的进行学习和思考问题,学生学习数学的兴趣得到了激发与进一步的发展,课堂整体表现活跃,积极开动脑筋,学生乐于合作学习,分享交流自己的发现,学生喜欢动手实验,对老师布置的思考题表现出较浓厚的'兴趣;学习习惯上,学我认为课前预习易使学生囿于教材框定的范围和思考方法,不利于发散思维能力的培养,应该在课堂上充分发挥学生的想象与思考,敢于大胆思考,课堂上就把时间有在思考问题上,而不应该用在当“打字员”上,本学期要思考如何克服课前预习、课堂上记笔记的弊端,发挥其有利的一面,学生对思考规律的小结,及时复习、总结上的习惯,还需要加强,课堂上专心致至的听讲,想在老师和同学的前面,及时纠正作业和试卷中的错误的习惯还需要加强,表扬和鼓励阅读与数学有关的课外读物,引导学生自主拓展和加深自己的知识的广度与深度;在学习方法上,一题多解,多题一解,从不同的角度看问题,从对称的角度思考问题,用不同的方法检验答案,需要加强训练与培养。
三、教材分析
本学期的教学内容共计七章,第九章角, 第十章 平行线第十一章 图形与坐标, 第十二章 二元一次方程组, 第十三章 走进概率, 第十四章 整式的乘法, 第十五章 平面图形的认识.现行教材、教学大纲要求学生从身边的实际问题出发,乘坐“观察”、“思考”、“探究”、“讨论”、“归纳”之舟,去探索、发现数学的奥妙,用学到的本领去解决“复习巩固”、“综合运用”、“拓展探索”等不同层次的问题。教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质。
四、具体落实措施:
1、根据昌乐县实验中学”五环高校课堂”实验要求,依据素质教育理论和新课改要求,结合学生课堂学习内容,分为以下五个环节:自主学习、自主探究——应用知识训练——小组合作讨论——典型问题展示总结——检测反馈、归纳总结
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、成立课外兴趣小组,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置a、b、c三等分层布置,课堂上照顾好好、中、差在三类学生。
五、教学进度
数学教学计划 篇6
一、指导思想
严格遵循党的教育方针,爱岗敬业,正确传授学生知识,并对学生进行适当的思想教育,培养其成为新时期现代化建设的接班人和建设者。认真培养其数感,提高其计算能力,培养其空间观念,并能把所学的知识应用到生活实际中去,解决实际生活中的问题。
二、基本情况分析
本班共有学生45人,其中男生19人,女生26人。从上一学年的班主任反映来看这个班的大部分的学生学习态度散漫,学习习惯极需培养,空间观念不够强。上课时不肯积极思考,主动、创造性的学习有待加强。特别从上学年的知识质量验收的情况看,学生的存在明显的两极分化,后进生的面还是大,针对这些情况,本学年在重点抓好基础知识教学的同时,加强后进生的辅导和优等生的指导工作,全面提高合格率和优秀率。
三、教学目标
1. 理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2. 理解倒数的意义,掌握求倒数的方法。
3. 理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4. 掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5. 知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6. 能在方格纸上用数对表示位置,初步体会坐标的思想。
7. 理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8. 认识扇形统计图,能根据需要选择合适的统计图表示数据。
9. 经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10. 体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析推理的能力。
11. 体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12. 养成认真作业、书写整洁的良好习惯。
四、方法措施
1、认真备课,钻研教材,作到课堂上能深入浅出进行教学,特别照顾到后进生。
2、平时的练习要有针对性,对于后进生和优秀的学生要分
别出一些适合他们的练习。
3、加强操作、直观的教学,例如教学圆和轴对称图形时,就要利用操作、直观教学,以发展他们的空间观念。
4、增加实践活动,培养学生用数学知识解决实际问题的能力。
5、加强能力的培养。主要培养学生的分析、比较和综合能力;抽象概括能力;判断、推理能力;迁移类推能力;揭示知识间的联系,探索规律,总结规律;培养学生思维的灵活性和敏捷性。
五、后进生转化措施:
1、培养后进生的自信心。只有树立起后进生的自信心,我们的转化工作才找到了起点。要用科学的方法教育后进生。
2、对后进生多宽容,少责备。要做到“三心”:诚心、爱心、耐心。
3、重视与家庭的联系。
数学教学计划 篇7
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集、全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
作者:尚大志
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1
②观察集合A,B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A,B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学20xx年9月入学的高一年级女同学},B={x|x是国兴中学20xx年9月入学的高一年级男同学},C={x|x是国兴中学20xx年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
(2)所有属于集合A或属于集合B的元素组成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如图1所示.
(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.
(6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
应用示例
例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?
变式训练
1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.
解:对任意m∈A,则有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A?B.
而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.
3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:∵A∩B={9},则9∈A,a-1=9或a2=9.
∴a=10或a=±3.
当a=10时,a-5=5 ,1-a=-9;
当a=3时,a-1=2不合题意;
当a=-3时,a-1=-4不合题意.
故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.
4.设集合A={x|2x+1<3},B={x|-3
A.{x|-3
C.{x|x>-3} D.{x|x<1}
解析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3
答案:A
例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B?A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.
∵A∩B=B,∴B?A.
∴B= 或B≠ .
当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}?A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有-4+0=-2(a+1),-4×0=a2-1.
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.
变式训练
1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A?(A∩B)成立的所有a值的集合是什么?
解:由题意知A?(A∩B),即A?B,A非空,利用数轴得 解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.
2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A∪B=A,试求实数m的取值范围.
分析:由A∪B=A得B?A,则有B= 或B≠ ,因此对集合B分类讨论.
解:∵A∪B=A,∴B?A.
又∵A={x|-2≤x≤5}≠ ,∴B= ,或B≠ .
当B= 时,有m+1>2m-1,∴m<2.
当B≠ 时,观察图4:
【【精品】数学教学计划集合7篇】相关文章:
【精品】数学学习计划集合八篇04-22
数学高一教学计划04-26
数学教学计划(5篇)04-15
八上数学教学计划04-11
初三数学春季教学计划04-26
大班秋趣味数学教学计划04-26
数学教学计划最新5篇04-11
小学的数学教学计划范文03-21
学校数学老师教学计划03-21
最新小学数学的教学计划03-21