华师大版九年级数学上册的教学计划

时间:2022-09-05 17:22:45 教学计划 我要投稿

华师大版九年级数学上册的教学计划(通用12篇)

  光阴迅速,一眨眼就过去了,新的机遇和挑战向我们走来,该写为自己下阶段的教学工作做一个教学计划了,想必许多人都在为如何写好教学计划而烦恼吧,以下是小编收集整理的华师大版九年级数学上册的教学计划,仅供参考,欢迎大家阅读。

华师大版九年级数学上册的教学计划(通用12篇)

  华师大版九年级数学上册的教学计划 篇1

  本学期是初中学习的关键时期,教学任务非常艰巨,因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。

  一、学情分析

  经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

  二、指导思想

  坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

  三、教学内容分析

  本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

  在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

  学生解题过程中存在的主要问题:

  (1)审题不清,不能正确理解题意;

  (2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

  (3)对所学知识综合应用能力不够;

  (4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

  四、教学目标

  态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。

  五、采取的措施。

  1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;

  2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;

  3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

  4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;

  5、积极与其他教师沟通,加强教研教改,提高教学水平;

  6、经常听取学生良好的合理化建议;

  7、以“两头”带“中间”的战略不变;

  8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;

  9、认真开展课内、课外活动,激发学生的学习兴趣。

  10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。

  华师大版九年级数学上册的教学计划 篇2

  冬去春来,转眼间,新的学期开始了,在本学期中我接着担任九(1)班数学科教学工作,为了让学生能学到有用的、大众化的数学知识,并能将之运用于未来的生活实际中,根据学校工作要求,结合班级学生实际情况,现将本学期教学工作开展作如下计划:

  一、根据学生对知识的掌握情况,选择适宜的生活实例渗入课堂教学中,培养学生对知识的应用能力。

  本班学生从上学期的考试中看出,本班学生对知识的应用能力比较差,大部分同学只做了选择题和填空题,而对后面的应用题却无从作手,针对此情况,在本学期的教学中,将从学生的生活实例入手,以基础知识的应用为主,培养学生对知识的应用能力和分析问题能力。

  二、在传授知识文化的同时,注重对学生的品德教育。

  九年级的学生,正处于人生的十字路口,面临着毕业、升学、择业和就业的压力,加之青春期的骚动,极易走极端,在课堂教学中,要注意观察学生的思想动态,在传授知识的同时,实时、适宜地对学生思想加以正确的引导,努力做到传授知识与育人的有机结合,使学生能得以健康发展。

  三、多与学生沟通交流,站在学生的立场进行教学,力争从本质上提高教学质量。

  总结自己近几年的教学情况,总觉得收效甚微,细思原委,多数时候,自己的教学是为了完成大纲的要求,为了能按时完成教学工作,而忽略了学生的实际认知水平和接受能力,从而导致学生厌学,也使得自己的教学质量得不到明显的进步。在本学期中,我将利用好课余和课堂时间和机会,站在学生的角度,与学生进行交流,了解他们的实际需要和接受能力,并根据实际情况进行选择性教学,从本质上提高教学质量。

  四、做好与同科教师的教学交流活动,互相取长补短,提高自己的教学业务水平。

  充分利用好学校提供的教研活动平台,积极参与学校开展的听评课活动,学习同行们的教学长处,同时,在交流中充分认识自己的不足,做出合理、可行的改进措施,提高自己的教学业务水平。平时,认真备好每一节课,做到有备而上,对学生的作业,认真批改,写好作业评语,利用作业评语与学生更好地进行沟通交流,鼓励学生学习。

  华师大版九年级数学上册的教学计划 篇3

  为加强课堂教学,更加高效地完成本学科教学任务制定本教学计划。

  一、教学目标:

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  二、在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

  (3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

  (4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

  (5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

  (6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  (7)积极与其它老师沟通,加强教研教改,提高教学水平。

  (8)经常听取学生良好的合理化建议。

  (9)以“两头”带“中间”战略思想不变。

  (10)深化两极生的训导。

  三、不断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加新一轮的继续教育培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

  四、分层辅导

  因材施教对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

  五、严格按照教学进度,有序的进行教学工作。

  用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好毕业班的教学工作。

  六、强化复习指导。

  分二阶段复习:

  (一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

  这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

  1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

  2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆。复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

  3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。

  中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

  4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

  (二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

  培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。

  华师大版九年级数学上册的教学计划 篇4

  一、指导思想:

  坚持以课本为基础,遵循课程标准,深挖教材,活用教材,帮助学生建立较完整的初中数学知识体系。坚持面向全体学生,尽可能让每位学生掌握好义务教育阶段的初中数学基础知识和基本技能,同时注意初中数学与高中数学的衔接,兼顾部分优秀学生升学的需要,努力培养他们准确的运算能力、丰富的空间想象能力、严密的逻辑推理能力以及创新能力,为他们将来的继续教育打下坚实的基础。

  二、学情分析:

  本届九年级有三个班,由于多方面的原因,三个班的.数学基础形成了较大的差距,1102班学生学习数学的热情比较高,在数学方面比较拔尖的同学相对要多些,但两极分化也比较严重。1102班学生的数学成绩中间层比较多,拔尖的任务比较艰巨。学生基础不好的同学比较多,厌学的也比较多,学生的自觉性比较差,两极分化现象也比较突出。本届学生的另一个特点是,运算的准确性不高,解题时沉不住气,缺乏克服困难的勇气。

  三、复习重点、难点:

  代数式与方程、函数、全等三角形与相似三角形、圆是复习的重点。

  复习的难点:圆、二次函数、数学思想方法、数学思维能力的培养、逻辑推理能力以及空间想象能力的培养。

  鉴于初中教育属于普及教育,因此中考必注重基础知识和基本技能的考查,从近年岳阳市中考数学卷及全国各地数学中考卷来看,都有近100分的基础题。因此,基础知识和基本技能的复习应作为重中之重来对待,中考数学复习应很抓基础知识的复习,尽可能地让学生掌握初中数学基础知识和基本技能。为了督促学生夯实基础,以学习小组的形式开展学习竞赛,每节数学课前对上堂数学课所复习的内容进行课前检测,每位同学的得分记入学习小组的得分,检测未过关的同学由学习小组的组长督促其过关,教师进行抽查,抽查问题严重的将扣小组的得分。

  对于基础较好的同学还应提出特别的要求,那就是对圆和二次函数压轴题这两个难点内容的突破。从九周开始,给基础好的同学每天布置一道圆的解答题或二次函数解答题的练习,并尽量做到面批面改,力争优生突破这两大难点。

  四、具体措施:

  1、加强同组教师之间的研讨。

  ⑴、认真研究《课程标准》和《2011年湖南省初中毕业学业考试标准》有《考试说明》,明确复习的教学要求。

  ⑵认真研究初中数学教材,处理好课标、考纲、教材、复习资料之间的关系,处理好面向全体学生和关注学生个性发展的关系。

  ⑶认真研究近三年岳阳市以及全国各地的中考数学试题,把握中考命题的特点和命题趋势。

  ⑷认真研究本校数学教学的情况,尤其是本届九年级学生的学情,制订适合我校学情的切实可行的复习教学计划。

  ⑸认真研究和吸取我校往届毕业班教学的成功经验,加强跨年级教师之间的联系。

  2、遵循课程标准,立足基础知识。

  课程标准是中考命题的重要依据,遵循课程标准能使我们更好的把握复习的重点和难点,因此课程标准是中考复习中最有参考价值的资料。由于初中教育属于一种普及式的义务教育,因此中考主要是一种水平考试,考试的命题也就以考查基础知识和基本技能为主。复习中我们应以基础知识和基本技能的复习为主,尽可能的让更多的学生掌握好初中阶段基本的数学知识。

  3、面向全体学生,搞好拔尖辅后。

  义务教育的一个要求是教学必须面向全体学生。另外,要全面提高初中数学教学质量,也必须面向全体学生。以学习小组的形式开展互帮互助的学习竞赛是一种实现整体提升的有效途径。此外,还应把握好复习教学的要求,面向全体学生精心选题,尽可能让每位学生都能参与其中,对后进生不能放弃,因为他们的增分空间最大,处理得好的话中考中他们也最容易增分。往届毕业班的数学教学在这方面有许多成功的经验值得借鉴。

  中考不仅是水平考试,同时还具有为普高选拔优秀学生的功能,因此复习中除面向全体学生外还要搞好拔尖培优的工作。对于数学尖子生,应增加适当的有一定思维量的习题,特别是圆和二次函数的习题的练习。对这部分学生应多从数学思想方法上去训练他们,要注重培养他们的逻辑思维能力和空间想象能力以及创新能力。对于这部分学生题海战不仅会消耗掉他们独立思考的时间,而且还会降低他们学习数学的热情。

  4、构建知识体系,突出数学思想方法的渗透。

  中考数学的考试试题的覆盖面大,它要求学生全面掌握初中数学知识。通过复习,让学生全面、系统地掌握初中数学的基础知识、基本技能和基本方法,构建数学的知识网络,有利于学生更好的理解各知识点之间的内在联系,提高学生融会贯通的能力。为此,复习中打破教材的编排顺序,将初中数学知识分成如下几大块进行复习:数与式、方程与不等式、函数、统计与概率、三角形与四边形、圆、数学思想方法,这样处理,有利于帮助学生构建知识体系。分块复习的同时,要注意渗透分类讨论的思想、转化与化归的思想、数形结合的思想、由特殊到一般的思想等数学思想方法,只有通过数学思想方法的教学,才能让学生掌握数学的灵魂,学生才能以不变应万变。

  5、强化课前检测,提高课堂教学效率。

  搞好每堂课的课前检测,可以及时了解学生对所复习的知识的掌握程度,可以帮助我们及时的调控教学,同时还对学生的学习起到督促的`作用,为此,采用分学习小组的形式开展学习竞赛,提高学生学习的积极性。课前检测注重基础知识的检测,一般3至4道题。时间5、6分钟为宜。

  6、认真总结每一次测试的得失,提高试卷的.讲评效果

  试卷讲评要有科学性、针对性。讲评不能简单的公布正确答案,要帮助学生分析得与失,分析错误的原因,对较普遍性的问题还要通过变式训练帮助学生过好关,对中上等生还要跟踪督查落实情况。并在下次测试中拿来再测,以求让学生真正过关。

  7、注重学法指导及心理辅导

  ⑴及时向学生介绍学习方法和学习策略,及时收集教学过程中反馈信息并弥补学生的不足。

  ⑵针对不同学生的实际水平,合理安排教学难度,有利于学生体验成功的乐趣,提高学习的积极性。

  8、搞好综合训练和模拟训练

  预留三周的时间进行综合训练和模拟训练,以提高学生综合运用初中数学知识的能力,巩固前段时间所复习的基础知识,检查复习中知识的疏漏和清除解题中的易错点,完善知识网络的构建。综合训练和模拟训练要把握好试卷的难度和梯度,通过练习,使学生不断总结考试经验和考试技能,提高学生中考的应试能力。

  华师大版九年级数学上册的教学计划 篇5

  九年级数学教学时间紧,任务重。既要完成新课程的教学,又要考虑下学期对初中阶段整个数学知识的全面系统的复习。所以在注意时间的安排、把握好教学进度的基础上,特制定本学期的教学计划:

  一、学情分析:

  本学年我担任九(2)班的数学教学任务,从八年级下学期期末考试的成绩总体来看,出现了两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差。

  在学习能力上,学生学习的主动性较差,学生自主拓展知识面,向深处学习知识的能力没有得到培养。学生的逻辑推理、思维能力,计算能力需要得到加强,以提升学生的整体成绩;在学习态度上,部分学生学习积极性不高,不少数学生对数学处于一种放弃的心态,作业抄袭现象严重,学生完成作业的质量大打折扣。

  二、教材分析:

  本学期教学内容,共计六章,第一章《特殊的平行四边形》,能证明菱形、矩形、正方形的性质和判定定理,理解菱形、矩形、正方形与平行四边形的关系,掌握综合法的证明方法。第二章《一元二次方程》,能够用多种方法求解一元二次方程,体会转化思想,会用一元二次方程解决实际问题,进一步体会模型思想。第三章《概率的进一步认识》,会用列表和画树状图方法计算简单事件发生的概率,认识概率与频率的关系。第四章《图形的相似》认识图形的相似,了解相似三角形的性质,进一步发展学生的推理能力。第五章《投影与视图》,通过实例了解中心投影与平行投影,会画直棱柱、圆柱、圆锥和球的三种视图。第六章《反比例函数》,体会反比例函数的意义,能根据已知条件确定反比例函数的表达式,理解反比例函数的性质,体会用反比例函数解决实际问题的方法与思想。

  三、教学目标:

  1、知识与技能:

  第一章《特殊平行四边形》、第四章《图形的相似》使学生经历探索、猜测、证明的过程,进一步发

  展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。能证明与三角形、平行四边形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《投影与视图》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《概率的进一步认识》这一章让学生理解频率与概率的关系,进一步体会概率是描述随机现象。并会用树状图或表格求概率。

  在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用,从而培养学生的思维能力和应变能力。

  在《直角三角形的边角关系》中,探索30度、45度、60度角的三角函数值从中发展学生观察、分析、发现的能力。能用锐角三角函数解直角三角形,并会解决与直角三角形有关的实际问题。

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

  2、过程与方法:

  经历探索过程,让学生进一步体会数学来源与实践,又应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

  3、情感态度与价值观:

  通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

  四、教学重难点:

  教学重点:菱形、矩形、正方形的有关计算和证明,相似三角形的有关计算和证明,以及周长和面积的计算,反比例函数的图像和性质的应用。一元二次方程的解法和应用。特殊三角函数值的运算,解决与直角三角形有关的实际问题。

  教学难点:菱形、矩形、正方形以及相似三角形的性质和判定的综合应用。

  五、具体措施:

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)抓住课堂45分钟。严格按照教学计划,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量,精心组织课堂活动,使绝大多数学生都能够积极主动参与到课堂活动中来,动手、动口、动脑,活跃思维,发散思维,深刻思维,及时反馈信息,提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  (4)习惯养成,提高能力。要循序渐进,潜移默化地培养学生勤于思考,善于思考,理解记忆,运用巩固,探赜索隐的习惯,培养学生专心致志,自主学习的习惯,达到内化为自己的一种自觉行为。

  (5)总结规律,扬长避短。要及时总结学习规律,吸纳各方建议,补苴罅漏,摒弃错误,探寻经验,踔厉奋发,迎接挑战。

  华师大版九年级数学上册的教学计划 篇6

  一、指导思想:

  九年级数学以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

  二、教学内容

  本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

  三、教学目标

  知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

  过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

  四、教学措拖

  1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

  2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

  3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

  五、教学进度

  全学期约为22周,安排如下:

  09.1~09.30:一元二次方程

  10.7~10.30:定义命题公理与证实

  11.01~11.26:相似形

  11.27~12.27:解直角三角形

  12.28~2010.1.14:概率的计算

  01.15~01.30:整理复习

  华师大版九年级数学上册的教学计划 篇7

  九年级数学教学计划上册初三学年下学期的复习教学,是整合升华学科知识,培养提高应试能力的重要环节。复习教学工作的好坏,直接关系到中考的成功与否。为保障毕业班复习教学取得良好成效,

  以科学发展观为指导,以复习课型模式研究,提高课堂效益为重点,面向全体学生,优生优培,中程生提高,困难生稳中求进;依纲据本,抓住重点,突破难点,强化薄弱环节;加强教情,学情研究,强化中考的研究,大面积提高教学成绩,促进初三复习教学工作又好又快发展。

  1,提高认识,全力以赴,进入冲刺状态

  首先,每位初三教师要充分认识复习教学的重要性,增强责任重于泰山,质量压倒一切的责任感,树立认真就是水平,负责就是能力的观念,发扬关键时刻冲得上豁得出的拼搏精神,全力以赴,聚精会神,专心致志,真真正正进入冲刺状态,苦战100天,用成绩说话,坚决夺取今年中考的全面胜利。其次,全体教师要以毕业班工作的大局为重,服从安排,听从指挥,不管是级部的安排,还是各备课组的布置,都要扎扎实实贯彻执行,将落实进行到底。纪律严明,政令畅通,是工作胜利的保障。要彻底杜绝有令不行,有禁不止的以自我为中心的个人主义的不良作风。第三,全体教师要增强精诚合作的团队意识,实实在在搞好团结。团结出力量,团结出成绩。在初三这个集体内坚决反对那种意气用事,挑拨离间的行为。有意见,有矛盾当面说开,大事讲原则,小事讲风格;有困难,有问题,大家齐帮助,共协商,形成一个和谐,融洽的工作氛围。

  2,周密计划,科学安排

  各学科现已完成教学进度,学期开始即转入总复习阶段。总体时间安排是3月上旬4月中旬45天左右为第一轮复习,以课本知识的疏理,归纳,总结为主;备课组自编讲学稿一套。4月下旬5月中旬30天左右,以课外拓展为主,以专题复习为主。5月下旬6月中考前,主要是整合升华阶段,综合模拟为主,训练应试能力与技巧。

  三轮复习的具体思路是:

  一轮复习本着全面,扎实,系统,灵活的指导思想,一是做到四个坚持,即:坚持把复习的重点放在基础知识上;坚持补弱纠偏,重在一轮;坚持改进课堂教学,提高复习效率;坚持面向全体,实现大面积丰收。二是落实四个为主,即以基础知识的复习为主,以低中档题目的训练为主,以学科内综合为主,以小综合训练为主。三是处理好三个关系,即:基础和能力的关系(强化基础,提升能力),扬长与补弱的关系,复习知识与做题的关系(做题的目的是回扣知识提升能力)。四是确保两项常规的落实,即教师的教学常规和学生学习常规的落实。

  二轮复习本着巩固,完善,综合,提高的指导思想,采取专题复习加综合训练的复习模式,突出五个强化,即

  ①强化时间观念;

  ②强化研究:重点研究两纲(教学大纲和考试说明),两题(综合题和能力题),两课(复习课和讲评课),两生(优生和困难生),两法(教学方法和学习方法),两情(教情和学情);

  ③强化训练:立足三个讲好,增强五个针对性。三个讲好:讲好专题,讲好试卷,讲好练习;五个针对性:针对目标生讲,针对中考新模式指向讲,针对二轮复习能力要求讲,针对反馈的问题讲,针对典型题目讲;

  ④强化应试技巧与规范化,最大限度降低非知识性丢分;

  ⑤强化学生心理调控,加强心理辅导,使学生以一种积极的心态复习,以必胜的信念参加中考。

  三轮复习以回扣,模拟,完善,调整为指导思想。抓回扣做到四化要求,即:回扣教材提纲化,回扣基础系统化,回扣形式习题化,回扣时间具体化;抓模拟做到四性要求,即试题体现基础性,考试体现模拟性,答题体现规范性,讲解体现系统性。逐步达到完善知识体系,适应考试要求,调整教与学的方向,升华应试技能的目的。

  3,细致研究教材,考试说明,中考试题,做到有的放矢。

  各任课教师要加强对初中学段本学科教材的通研。教材是中考命题的依托,一方面要熟悉教材的整体编排体系,编写体例,重点难点,另一方面又要熟悉每个单元的教学目标,知识结构,知识点和能力训练点,教法和学法等。要在通研教材的基础上,把教材重新划分若干个大单元,以利系统复习。

  4,组织好大型考试,搞好质量分析

  级部组织的综合拉练,模拟考试,要做到考务严密,分析透彻,补漏措施具体,使每一次考试成为学生学习的加油站,教师教学的里程碑,教学质量的大会诊。

  5,重视非智力因素培养,加强学法指导

  全体教师要从只重视学生的智力因素转移到重视智力因素与非智力因素协调发展上来,特别应突出对学生学习兴趣与动力激发,学习习惯与品质养成,理想教育与成功教育等方面的研究和强化。各任课教师要系统有序地教给学生本学科的学习方法,并注意跟上个别指导。班主任要利用一定时间,如每次考试后安排23名学生现身说法,介绍学习方法和学习经验。对学生授之以渔而非授之以鱼,可起到事半功倍之成效。

  6,因材施教,加强学生的分层次教育。

  首先,切实贯彻优生优培,中间生提高,困难生稳中求进的原则。全体教师要增强优生优培意识,调整优生优培策略,要特别关注各班第一名,将其作为重点中的重点悉心培养。对本班前10名的学生要重点培养,增加升入重点高中的数量,提高本班优秀率。各科教师要注意中程生的各科平衡发展,尤其是加强中程生薄弱学科的特殊对待,在课堂提问,试卷批阅等环节要注意对中程生倾斜,使其尽快优化,以提高平均分,增加其升入高中的机会。对学习困难生,更要多一份耐心,要想方设法鼓舞其信心,利用复习的机会掌握一些基本知识,提高平均分,顺利完成学业,以此提升平均分。

  7,落实备考的关键环节

  (1)是要把好集体备课关。继续加大落实集体备课力度,要求备课组长分好工,每人重点备某一部分,选好该部分的练习题,然后主备人利用教研活动时间主讲,其他教师补充,提出建议,最后确定教案。

  (2)是要把好材料关。初三复习过程中学生所用的复习材料必须经过各备课组长以及各任课教师严格筛选,不经过集体研究的练习题决不发给学生。在选题时要按考点进行梳理,按中考能力的要求选题,题型,题量要尽量安排得全面,条理,有序,所选题目要尽量联系生活实际,贴近中考,体现新情景,新材料,便于训练利用已有知识解决新问题的能力。控制所选题目的难度,以中,低档难度题目为主,少选难题,杜绝偏题怪题。

  (3)是要把好阅批统计关。凡定时作业,练习,测试,必须有布置,有检查,认真批改,有查必评,有错必纠。杜绝练习,试题不批阅,不统计,凭感觉讲评的现象。

  (4)是要把好讲评关。根据批阅统计情况,有的放矢进行讲评,要讲学生所需,切忌面面俱到。要求学生多用启发式,讨论式,引导学生总结出规律和方法。要做到讲一题会一类,举一反

  (5)切忌就题论题。

  (6)是要把握好学生落实关。学生是否能够复习好,落实是关键。要留给学生自我反思,整改,消化的时间,要求学生从第一次拉练起,建立错题本,查失分,写考情分析,确立新目标,老师要做到跟踪检查,让部分学生二次过关。

  教学措施

  实行分轮复习

  第一轮重点复习巩固基础知识,以课本基本知识为依据,列出每章的知识网络,有利于学生对知识掌握的系统化,以训练基本技能为主的试题辅以练习,强化训练,加深印象。第二轮复习在第一轮分项复习的基础上,进行综合类型题的复习,包括几何应用,代数应用,几何综合,代数综合等方面的综合练习。第三轮主要是做中考模拟试题,让学生熟悉考试类型题,同时提高学生应试的心理素质。最后阶段,根据学生对知识掌握的程度,查漏补缺,因材施教。

  教学基本用书

  (一)本学期的教学用书参考《初中数学教与学》,《浙江中考》,《三年中考优化试卷》。

  (二)自编讲学稿一套。

  时间安排

  2月26日2月28日第二章《简单事件的概率》

  3月1日3月9日第四章《投影与三视图》

  3月10日4月中旬复习基础知识

  4月中旬5月上旬分项训练

  5月上旬5月底综合训练做模拟试题

  5月底到最后根据情况查漏补缺。

  华师大版九年级数学上册的教学计划 篇8

  一、指导思想:

  初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  二、教学内容:

  本学期所教初三数学包括第一章 证明(二),第二章 一元二次方程,第三章 证明(三),第四章 视图与投影,第五章 反比例函数,第六章 频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数 这两章是与数及数的运用有关的。频率与概率 则是与统计有关。

  四、教学目的:

  在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

  在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

  五、教学重点、难点

  本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》, 《反比例函数》。以及与统计有关的《频率与概率》。

  《证明(二)》,《证明(三)》的重点是

  1、要求学生掌握证明的基本要求和方法,学会推理论证;

  2、探索证明的思路和方法,提倡证明的多样性。

  难点是

  1、引导学生探索、猜测、证明,体会证明的必要性;

  2、在教学中渗透如归纳、类比、转化等数学思想。

  《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。

  《一元二次方程》, 《反比例函数》的重点是

  1、掌握一元二次方程的多种解法;

  2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。

  难占是

  1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。

  《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

  六、教学措施:

  针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

  1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

  2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

  3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

  4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

  华师大版九年级数学上册的教学计划 篇9

  教学目标:

  1.知识与技能:

  (1)能证明等腰梯形的性质和判定定理

  (2)会利用这些定理计算和证明一些数学问题

  2.过程与方法:

  通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

  3.情感态度与价值观:

  通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

  重点、难点:

  重点:等腰梯形的性质和判定

  难点:如何应用等腰梯形的性质和判定解决具体问题。

  教学过程

  (一)知识梳理:

  知识点1:等腰梯形的性质1

  (1)文字语言:等腰梯形同一底上的两底角相等。

  (2)数学语言:

  在梯形ABCD中

  ∵AD∥BC,AB=CD

  ∴∠B=∠C

  ∠A=∠D(等腰梯形同一底上的两个底角相等)

  (3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

  知识点2:等腰梯形的性质2

  (1)文字语言:等腰梯形的两条对角线相等

  (2)数学语言:

  在梯形ABCD中

  ∵AD∥BC,AB=DC

  ∴AC=BD(等腰梯形对角线相等)

  (3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

  知识点3:等腰梯形的判定

  (1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

  (2)数学语言:在梯形ABCD中∵∠B=∠C

  ∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

  (3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

  (4)说明:

  ①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

  ②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

  【典型例题】

  例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

  (1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

  (2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

  解:(1)略。

  (2)DE=(AD+BC)

  过D作DF∥AC交BC延长线于点F

  ∵AD∥BC,∴四边形ACFD是平行四边形

  ∴AD=CF, AC=DF

  ∵AC=BD

  ∴BD=DF

  又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

  ∵DE⊥BF,则DE=BF,

  ∴DE=(BC+CF)=(BC+AD)

  例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

  解:过点B作BF⊥CD于F

  ∵四边形ABCD是等腰梯形

  ∴BC=AD

  ∵BF=AE,BF⊥CD,AE⊥CD

  ∵Rt△BCF≌Rt△ADE

  在Rt△BCF中,∠C=60°

  ∴∠CBF=30°

  ∴CF=BC即BC=2CF

  ∴BC2=CF2+BF2

  即∴CF=2

  ∵AB∥CD,BF⊥CD,AE⊥CD

  ∴四边形ABFE是矩形

  ∴EF=AB=6m

  ∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

  例3. 已知如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

  (1)请写出图中4组相等的线段。(已知的相等线段除外)

  (2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

  解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

  (2)证明AG=BG,因为在梯形ABCD中,

  AB∥DC,AD=BC,所以梯形ABCD为等腰梯形

  ∴∠GAB=∠GBA

  ∴AG=BG

  课堂小结:

  本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

  华师大版九年级数学上册的教学计划 篇10

  教学目标

  (1)会用公式法解一元二次方程;

  (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

  (3)渗透化归思想,领悟配方法,感受数学的内在美.

  教学重点

  知识层面:公式的推导和用公式法解一元二次方程;

  能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

  教学难点:求根公式的推导.

  总体设计思路:

  以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

  教学过程

  (一)以旧引新,提出问题

  解下列一元二次方程:(学生选两题做)

  (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

  (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

  然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

  接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

  (1)3x2+4x+2=0; (2)3x2-2x+1=0;

  (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

  思考:新的四题与原题的解题过程会发生什么变化?

  设计意图:

  1.复习巩固旧知识,为本节课的学习扫除障碍;

  2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

  3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

  (二)分析问题,探究本质

  由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

  进而提出下面的问题:

  既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

  让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

  ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可

  ax2+bx=-c 以采用学生独立尝试配方, 合

  x2+ x=- 作尝试配方或教师引导下进行

  x2+ x+ =- + 配方等各种教学形式.

  (x+ )2=

  然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2 -4ac”的重要性.

  当b2-4ac≥0时,

  (x+ )2= 注:这样变形可以避免对a正、负的讨论,

  x+ = 便于学生的理解.

  x=- 即x=

  x1= , x2=

  当b2-4ac<0时,

  方程无实数根.

  设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

  (三)得出结论,解决问题

  由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,

  x=;

  当b2-4ac<0时,方程无实数根.

  这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

  进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

  设计意图: 理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

  运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)

  (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

  (3)x2+15x=-3x; (4)x2- x+ =0.

  注:( 教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

  设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

  用公式法解一元二次方程:(比一比,看谁做得又快又对)

  (1)x2+x-6=0; (2)x2- x- =0;

  (3)3x2-6x-2=0;(4)4x2-6x=0;

  设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

  (四)拓展运用,升华提高

  [想一想]

  清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,

  而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

  设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,

  避免以后出现运算错误。

  归纳小结, 结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

  (五) 布置作业

  ㈠必做题

  ㈡选做题:P46第12题。

  设计意图:结合学生的实际情况,可以分层布置。 适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

  华师大版九年级数学上册的教学计划 篇11

  【学习目标】

  1.了解整式方程和一元二次方程的概念 。

  2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  【重点、难点】

  重点:一元二次方程的概念和它的一般形式。

  难点:对一元二次方程的一般形式的正确理解及其各项系数的确定

  【学习过程】

  一、

  知识回顾

  1.什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是

  2、这样的整式方程叫做一元二次方程.

  2、指出下列方程那些是一元二次方程:那些是一元一次方程?

  (1) 3x十2=5x-3

  (2) x2=4

  (3) (x十3)(3xo4)=(x十2)2;

  (4) (x-1)(x-2)=x2十8;

  以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________

  二、

  探究新知[一]

  1.一元二次方程的一般形式是( )

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)

  2).方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?

  3).强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.

  探究新知(二)

  1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x 2十3x十2=O ___________

  (2)x 2-3x十4=0; __________

  (3)3x 2-5=0 ____________

  (4)4x 2十3x-2=0; _________

  (5)3x 2-5=0; ________

  (6)6x 2-x=0. _______

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;

  (3) (3x十2) 2=4(x-3) 2

  [学以致用:]

  强化概念:

  1. 说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x2十3x十2=O ______

  (2)x2-3x十4=0;_______

  (3) 3x2-5=0 _____________

  (4)4x2十3x-2=0;____________

  (5)3x2-5=0______________

  (6)6x2-x=0________

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x2=3-7x

  (2)3x(x-1)=2(x十2)-4

  (3)(3x十2)2=4(x-3)2

  [知识总结:]

  (1) 什么是一元二次方程?是一元二次方程满足哪几个条件?

  (2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );

  (3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.如:(3x十2) 2=4(x-3)____________

  诊断检测题一:

  1.一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项.

  2.方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.

  3.方程mx2+5x+n=0一定是( ).

  A.一元二次方程 B.一元一次方程

  C.整式方程 D.关于x的一元二次方程

  4.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )

  A.任意实数 B. m≠-1 C. m>1 D. m>0

  5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);

  3X2+Y=2X那些是一元二次方程?

  6.把下列方程化成一般形式,且指出其二次项,一次项和常数项

  (1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x

  诊断检测题二:

  1.方程 的二次项系数是 ,一次项系数是 ,常数项是 .

  2.把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;

  3.一元二次方程 的一个根是3,则 ;

  4. 是实数,且 ,则 的值是 .

  5.关于 的方程 是一元二次方程,则 .

  6.方程:① ② ③ ④ 中一元二次程是 ( )

  A. ①和② B. ②和③ C. ③和④ D. ①和③

  华师大版九年级数学上册的教学计划 篇12

  学习目标

  1、进一步认识建立方程模型的作用,提高数学的应用意识

  2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力

  学习重、难点

  重点:用一元二次方程解决实际问题

  难点:正确寻找等量关系

  学习过程:

  一、情境创设

  一根长22cm的铁丝。

  (1)能否围成面积是30cm2的矩形?

  (2)能否围成面积是32 cm2的矩形?并说明理由。

  二、探索活动

  分析情境问题可知:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是

  ____________。根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。

  思考:这根铁丝围成的矩形中,面积最大是多少?

  三、例题教学

  例 1 如图,在矩形ABCD中,AB=6,BC=12,点P从

  点A沿AB向点B 以1/s的速度移动;同时,点Q从点B沿边BC

  向点C以2/s的速度移动,问几秒后△PBQ的面积等于82?

  分析:题中含有等量关系:S△PBQ =82,只要用点P运动的时间

  来表示三角形各边的长并代入等量关系式即可得到相应的方程。

  例 2 如图,在矩形ABCD中,AB=6cm,

  BC=3cm。点P沿边AB从点A开始向点B以2cm/s

  的速度移动,点Q沿边DA从点D开始向点A以1cm/s

  的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)那么,当t为何值时,△QAP的面积等于2cm2?

  四、课堂练习

  1、P98 练习

  2、思维拓展:

  如图,有100m长的篱笆材料,要围成一矩形仓库,

  要求面积不小于600m2,在场地的北面有一堵50m的旧墙,

  有人用这个篱笆围成一个长40m,宽10m的仓库,但面积

  只有40×10m2,不合要求,问应如何设计矩形的长与宽才能符合要求呢?

  五、课堂小结

  如何正确寻找实际问题中的等量关系?

  六、作业

  后进生:P98 练习 P99 习题4.3 6 优生:P99 习题4.3 6、7、8

【华师大版九年级数学上册的教学计划】相关文章:

华师大版九年级数学上册的教学计划08-09

华师大版数学上册命题定理与证明作业及答案06-27

华师大版九年级数学上册教学计划范本05-30

华师大版九年级数学上册教学计划(精选5篇)09-02

华师大版九年级数学上册教学计划(通用5篇)01-18

华师大版初一数学相反数教学计划06-05

华师大版九年级数学测量教学计划01-07

斜边直角边华师大版数学教学反思11-27

华师大版初二上册科学《压强》说课稿02-15