八年级数学一次函数的图像教学设计

时间:2024-10-16 12:02:36 赛赛 教学设计 我要投稿
  • 相关推荐

八年级数学一次函数的图像教学设计

  作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。优秀的教学设计都具备一些什么特点呢?以下是小编精心整理的八年级数学一次函数的图像教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学一次函数的图像教学设计

  八年级数学一次函数的图像教学设计 1

  教学目标:

  1、理解一次函数及其图象的有关性质。

  2、能熟练地作出一次函数的图象。

  3、进一步培养学生数形结合的意识和能力。

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过程

  一.新课导入

  上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

  本节课我们进一步来研究一次函数的图象的其他性质。

  二.新课讲授

  (1)首先我们来研究一次函数的特例——正比例函数有关性质。

  请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。

  议一议

  (1)正比例函数y=kx的图象有什么特点?

  (2)你作正比例函数y=kx的图象时描了几个点?

  (3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?

  小结:正比例函数的图象有以下特点:

  (1)正比例函数的图象都经过坐标原点。

  (2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。

  (3)在正比例函数y=kx图象中,当k>0时,k的值越大,函数图象与x轴正方向所成的锐角越大。

  (4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的`增大而增大;当k<0时,y的值随x值的增大而减小。

  做一做

  在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。

  一次函数y=kx+b的图象的特点:分析:在函数y=2x+6中,k>0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。

  由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。

  对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。

  想一想

  (1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?

  (2)直线y=-x与y=-x+6的位置关系如何?

  (3)直线y=2x+6与y=-x+6的位置关系如何?

  在同一直角坐标系内作出一次函数y=2x,y=2x+3,y=2x-3的图象。探索一次函数y=kx+b中,b的值对一次函数图象的影响.

  三.巩固练习

  1、正比例函数y=kx的图象的特点。

  2、一次函数y=kx+b的图象的特点。

  3、一次函数y=kx+b的k、b的值对一次函数图象的影响。

  四.小结

  作业设计

  1、下列一次函数中,y的值随x值的增大而增大的是()

  A、y=-5x+3B、y=-x-7C、y=-D、y=-+4

  2、下列一次函数中,y的值随x值的增大而减小的是()

  A、y=x-8B、y=-x+3C、y=2x+5D、y=7x-6

  八年级数学一次函数的图像教学设计 2

  教材的地位和作用

  本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。

  (一)教学目标的确定

  教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

  1、知识目标

  (1)能用“两点法”画出一次函数的图象。

  (2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。

  2、能力目标

  (1)通过操作、观察,培养学生动手和归纳的能力。

  (2)结合具体情境向学生渗透数形结合的数学思想。

  3、情感目标

  (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。

  (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。

  (二)教学重点、难点

  用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的`直观感知、动手操作、合作交流归纳其规律。

  学情分析

  1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。

  2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。

  3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  教学方法

  我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

  教学设计

  一、设疑,导入新课(2分钟)

  师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?

  生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。

  生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。

  生3:正比例函数也是一次函数。

  师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?

  这节课让我们一起来研究 “一次函数的图象”。(板书)

  二、自主探究——小组交流、归纳——问题升华:

  1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)

  生:不知道。

  师:那就让我们一起做一做,看一看:(出示幻灯片)

  用描点法作出下列一次函数的图象。

  (1)y= 0.5x (2) y= 0.5x+2

  (3)y= 3x (4) y= 3x + 2

  师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?

  然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?

  小组汇报:一次函数的图象是直线。

  师:所有的一次函数图象都是直线吗?

  生:是。

  师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)

  师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)

  讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。

  小组1:正比例函数图象经过原点。

  小组2:正比例函数图象经过原点,一般的一次函数不经过原点。

  师出示幻灯片3(使学生再一次加深印象)

  师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?

  (一边思考,可以和同桌交流)(2分钟)

  生1:用3个点。

  生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!

  生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。

  师:我们都认为画一次函数图象,只过两个点画直线就行。

  (幻灯片4:师,动画演示用“两点法”画一次函数的过程)

  师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)

  师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?

  组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,

  1)点。这样找的坐标都是整数。

  组2:我们组认为尽量都找整数。

  组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)

  组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。

  师:同学们说的都很好。我觉得可以根据情况来取点。

  2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?

  问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)

  ①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。

  生1:①y=0.5x与y=0.5x+2;两直线平行。

  生2:②y=3x与y=3x+2;两直线平行。

  生3:③y=0.5x与y=3x;两直线相交。

  生4:④y=0.5x+2与y=3x+2;两直线相交。

  师:其他同学有没有补充?

  生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。

  生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。

  师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。

  八年级数学一次函数的图像教学设计 3

  一、教学目标知识与技能目标。

  1、能熟练作出一次函数的图像,掌握一次函数及其图像的简单性质;

  2、初步了解函数表达式与图像之间的关系。

  过程与方法目标。

  1、经历作图过程中由一般到特殊方法的转变过程,让学生体会研究问题的基本方法。

  2、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;

  3、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。

  情感与态度目标1

  .在作图的过程中,体会数学的美;

  2.经历作图过程,培养学生尊重科学,实事求是的作风。

  二、教材分析。

  本节课是在学习了一次函数解析式的基础上,从图像这个角度对一次函数进行近一步的研究。教材先介绍了作函数图像的一般方法:列表、描点、连线法,再进一步总结出作一次函数图像的特殊方法——两点连线法。结合一次函数的图像,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。为进一步学习图像及性质奠定了基础。

  教学重点:结合一次函数的图像,研究一次函数的简单性质

  教学难点:一次函数性质的应用

  三、学情分析

  函数的图像的概念及作法对学生而言都是较为陌生的。教材从作函数图像的一般步骤开始介绍,得出一次函数图像是条直线。在此基础上介绍用两点连线得一次函数的图像,学生就容易接受了。在函数解析式与图像二者之间的探讨这部分内容上,不要作更高要求,学生能回答书中的问题就可以了。教学中尽可能的多作几个一次函数的图像,让学生直观感受到一次函数的图像是条直线。

  四、教学流程

  (一)、复习引入

  1.什么叫做一次函数?

  2.你能说说正比例函数 y=kx (k≠0) 的性质吗?

  3.针对函数 y =kx+b,要研究什么?怎样研究?

  (二)做一做

  例1、画出函数y1=2x与y2=2x+3,y3=2x-2的图像二、新课讲解把一个函数的自变量和对应的因变量的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。下面我们来作一次函数y1=2x与y2=2x+3,y3=2x-2 的图像分析:根据定义,需要在直角坐标系中描出许多点,因此我们应先计算这些点的横、纵坐标,即x与对应的y的值。我们可借助一个表格来列出每一对x,y的值。因为一次函数的自变量X可以取一切实数,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3 y3=2x-2 描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到图像(如图)它们是一条直线。

  观察图像回答下列问题:

  (1)这三个一次函数图像的形状都是 ,并且倾斜程度,即互相 。

  (2)y1=2x的图像经过。

  (3)y2=2x+3的图像与y1=2x图像,且与y轴交于 ,即y2可以看作由y1向 平移 个单位长度得到,图像经过第 象限,k,b的符号如何?( )(4)y3=2x-2的图像与y1=2x图像 ,且与y轴交于 ,即y3可以看作由y1向 平移 个单位长度得到,图像经过第象限,k,b的符号如何?

  结论:

  1、一次函数y=kx+b(k≠0)的图像可以由直线y=kx平移 个单位长度得到。(上加下减)

  2、一次函数y=kx+b(k≠0)的图像是一条直线,我们称它为直线y=kx+b。

  3、平行的直线k相等。

  (三)做一做。

  (1)利用两点确定一条直线(两点画法)画出y=-x+3和y=-x 及 y=-x-4的图象的图像。

  师:回顾刚才的作图过程,经历了几个步骤?

  生:经历了列表、描点、连线这三个步骤。

  师:回答得很好。作函数图像的一般步骤是列表、描点、连线。今后我们可以用这个方法去作出更多函数的.图像。

  师:从刚才同学们作出的一次函数的图像中我们可以观察到一次函数图像是一条直线。

  (2)在所作的图像上取几个点,找出它们的横、纵坐标

  (四)议一议观察图像思考:

  (1)一次函数的图像从左往右是上升还是下降,由图像怎么看函数的增减性(y随x的变化),你认为决定条件是什么?

  (2)图像经过哪些象限?k,b的符号如何?

  (3)y=-x+3和y=-x-4是由y=-x怎样平移得到的?一次函数 y= kx+ b的图像是一条直线,因此作一次函数的图像时,只要确定两个点,再过这两个点作直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

  例1做出下列函数的图像

  (1)y = x+3

  (2)y = -x+3

  (3) y = 2x-4

  (4) y = -2x-4

  (五)课堂小结。

  这节课我们学习了一次函数的图像。一次函数的图像是一条直线,正比例函数的图像是经过原点的一条直线。在作图时,只需确定直线上两点的位置,就可得到一次函数的图像。一般地,作函数图像的三个步骤是:列表、描点、连线。

  (六)课后练习。

  书上93页练习五、教学反思本节课主要介绍作函数图像的一般方法,通过对一次函数图像的认识,得到作一次函数及正比例函数的图像的特殊方法(两点确定一条直线)。让学生能够迅速找到直线与坐标轴的交点,这是本节课的难点。数形结合,找准这两个特殊点坐标的特点(x=0或y=0),让学生理解的记忆才能收到较好的效果。

【八年级数学一次函数的图像教学设计】相关文章:

一次函数的图像和性质教学反思03-16

一次函数的图像和性质教学反思11-18

手绘线条图像教学设计03-10

《一次函数》教学设计12-06

八年级《一次函数》教学设计03-14

《图像编辑更艺术》教学设计03-16

信息技术《图像修补与特效》教学设计11-03

八年级数学下册《一次函数》教学反思04-18

八年级数学下册《一次函数》教学反思04-20

一次函数的概念优秀教学设计优秀06-13