《函数的概念》教学设计

时间:2024-10-15 09:00:00 进利 教学设计 我要投稿

《函数的概念》教学设计(精选7篇)

  作为一名无私奉献的老师,时常需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?以下是小编为大家整理的《函数的概念》教学设计,欢迎阅读,希望大家能够喜欢。

《函数的概念》教学设计(精选7篇)

  《函数的概念》教学设计 1

  一、复习回顾

  1.一次函数的定义。

  2.一次函数的图象。

  3.直线y=kx+b与方程的联系。

  那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

  教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

  设计意图:回顾所学知识作好新知识的衔接。

  二、导探激励

  问题1:我们来看下面两个问题有什么关系?

  1.解不等式5x+6>3x+10.

  2.当自变量x为何值时函数y=2x—4的'值大于0?

  教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题书包的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题。

  由于任何一元一次不等式都可以转化的ax+b>0或ax+b

  问题2:作出函数y=2x—5的图象,观察图象回答下列问题:

  (1)x取何值时,2x—5=0?

  (2)x取哪些值时,2x—5>0?

  (3)x取哪些值时,2x—5

  (4)x取哪些值时,2x—5>3?

  教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

  设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

  象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

  学生可以用不同方法解答,教师意图是尽量用图象求解。

  问题3:用画函数图象的方法解不等式5x+4

  设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.

  学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:

  方法一:原不等式可以化为3x—6

  以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这种函数观点认识问题的方法,对于继续学习数学很重要.

  三、巩固练习

  1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y

  2.利用图象解出x:

  6x—4

  [解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

  方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

  (2)方法一:画出y=3x+8的图象,从图象上可以看出当x

  方法二:要使y

  2.方法一:6x—4

  方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x

  四、随堂练习

  1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

  2.利用图象解不等式5x—1>2x+5.

  五、课时小结

  本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

  六、课后作业

  习题14.3─3、4、7题.

  七、活动与探究

  a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾,a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物,试问如何选择商场来购物更经济?

  《函数的概念》教学设计 2

  一、说课内容:

  九年级数学下册第27章第一节的二次函数的概念及相关习题 (华东师范大学出版社)

  二、教材分析:

  1、教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2、教学目标和要求:

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3、教学重点:对二次函数概念的理解。

  4、教学难点:抽象出实际问题中的二次函数关系。

  三、教法学法设计:

  1、从创设情境入手,通过知识再现,孕伏教学过程

  2、从学生活动出发,通过以旧引新,顺势教学过程

  3、利用探索、研究手段,通过思维深入,领悟教学过程

  四、教学过程:

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,ky=kx ,ky= , k0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解,强调k0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。

  例1、(1)圆的半径是r(cm)时,面积s (cm2)与半径之间的关系是什么?

  解:s=0)

  例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?

  解: y=x(20/2-x)=x(10-x)=-x2+10x (0

  例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)2

  =100(x2+2x+1)

  = 100x2+200x+100(0

  教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)

  3、为什么二次函数定义中要求a?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以为零?

  由例1可知,b和c均可为零.

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)2+1 (2) s=3-2t2

  (3)y=(x+3)2- x2 (4) s=10r2

  (5) y=22+2x (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的`和是10cm。

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

  于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  《函数的概念》教学设计 3

  教学目标

  1.知识目标:正确理解现阶段函数的概念,理解定义域的概念

  2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。

  3.情感目标:渗透数学来源于生活,运用于生活的思想。

  重点:让学生理解现阶段函数的概念,定义域的概念。

  难点:用函数模型去研究生活中简单的事物变化规律时,如何确定定义域。

  学情

  分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。

  教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。

  信息化教学资源

  1.动画设计《世界在不断的变化》

  2.专业录频软件;

  3.视频后期处理软件;

  4.QQ;

  5.其它图片、背景音乐。

  课前准备

  复习初中数学函数概念

  教学过程

  环节设计:教师活动、学生活动、设计意图

  环节一创设情境

  兴趣导入首先让学生观看视频《世界在不断的变化》

  老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。

  1、看视频。

  2、听老师解说,函数是研究世界变化规律的数学模型之一。

  3、了解函数的作用,对函数产生兴趣。

  通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。

  在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量.

  用一个生活实例加深对知识的理解。

  实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x去进行方便的运算。

  在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的'前提.

  所以我们重新定义函数,将自变量x的取值范围用集合D来表示.

  函数的定义:

  在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三

  知识总结

  (1)函数的概念。

  (2)强调用函数来研究事物变化规律的前提是确定自变量x的取值范围,即定义域。

  学生回顾本次微课所学习的知识。让学生回顾本节课学习内容,强化本节课重点,为下节课打下基础。

  环节四实例检测

  实例:文具店出售某种铅笔,每只售价0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用表达式来表示这个函数.

  要求学生把做题结果拍成照片,发到邮箱,及时反馈,学生练习,并把做题结果拍成照片,发到我的邮箱,并通过QQ与学生进行交流实例巩固今天学习的函数概念。

  《函数的概念》教学设计 4

  一、教材分析

  函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。

  二、学情分析

  从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。

  从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。

  三、教学目标

  知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。

  过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。

  情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。

  四、教学难重点重点:理解函数的概念;

  难点:概念的形成过程及理解函数符号y = f (x)的含义。

  [重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。

  从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。

  五、教法与学法选择

  充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。

  六、教学过程设计引入

  现实世界是充满变化的`,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题

  问题提出

  1、请回忆在初中我们学过那些函数?(学生回答老师补充)

  2、回忆初中函数的定义是什么?一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  知识探究一函数

  给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B或y=f(x),x∈A,其中,x叫做自变量,与x值相对应的f(x)值叫做函数值。 x的取值范围称为定义域,函数值f(x)的取值范围称为值域。定义理解一y=f(x)

  1.x是自变量,它是法则所施加的对象。

  2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。

  3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。

  定义理解二唯一确定

  通过三个例子和学生共同总结出:

  1、函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的

  2.A中元素不能剩,B中元素可以剩下。

  定义理解三定义域值域

  根据定义,函数是两个数集A,B间的对应关系

  自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域。例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x

  定义域为{0,1,2},值域为{0,2,4}从而共同探究出:值域是集合B的子集

  函数的三要素:

  定义域、对应关系、值域;

  函数的值域由函数的定义域和对应关系所确定;定义域相同,对应关系完全一致,则两个函数相等。 f(x)=3x+1与f(t)=3t+1是同一个函数。 x2f(x)=x与f(x)=不是同一个函数。 x然后和学生共同探究常见的已学函数的定义域和值域:

  知识探究二区间

  (设a, b为实数,且a

  例题:试用区间表示下列数集:

  (1){x|x ≤ -1或5 ≤ x

  (5){x|x≥0且x≠1}

  练习作业:把常见的函数的定义域和值域用区间表示。

  七、小结

  1、用集合的语言描述函数的概念2、函数的三要素3、用区间表示数集

  八、作业

  1.P28练习1,2 2.P34习题2-1A组:1,2

  《函数的概念》教学设计 5

  【高考要求】:

  三角函数的有关概念(B).

  【教学目标】:

  理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

  理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切

  【教学重难点】: 终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义

  【知识复习与自学质疑】

  一、问题

  1、角的概念是什么?角按旋转方向分为哪几类?

  2、在平面直角坐标系内角分为哪几类?与 终边相同的角怎么表示?

  3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

  4、弧度制下圆的弧长公式和扇形的面积公式是什么?

  5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

  6、你能在单位圆中画出正弦、余弦和正切线吗?

  7、同角三角函数有哪些基本关系式?

  二、练习

  1.给出下列命题:

  (1)小于 的角是锐角;(2)若 是第一象限的角,则 必为第一象限的角;

  (3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

  (5)相等的角必是终边相同的角;终边相同的角不一定相等;

  (6)角2 与角 的终边不可能相同;

  (7)若角 与角 有相同的终边,则角( 的终边必在 轴的非负半轴上。其中正确的命题的序号是

  2.设P 点是角终边上一点,且满足 则 的值是

  3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB长=

  4.若 则角 的终边在 象限。

  5.在直角坐标系中,若角 与角 的终边互为反向延长线,则角 与角 之间的关系是

  6.若 是第三象限的'角,则- , 的终边落在何处?

  【交流展示、互动探究与精讲点拨】

  例1.如图, 分别是角 的终边

  (1)求终边落在阴影部分(含边界)的所有角的集合;

  (2)求终边落在阴影部分、且在 上所有角的集合;

  (3)求始边在OM位置,终边在ON位置的所有角的集合

  例2.(1)已知角的终边在直线 上,求 的值;

  (2)已知角的终边上有一点A ,求 的值。

  例3.若 ,则 在第 象限.

  例4.若一扇形的周长为20 ,则当扇形的圆心角 等于多少弧度时,这个扇形的面积最大?最大面积是多少?

  《函数的概念》教学设计 6

  一、教材分析

  1、 教材的地位和作用:

  函数是数学领域中最为重要的概念之一,在中学数学中贯穿始终。概念作为数学的基础,函数理论的显著特点之一就是强调概念性。只有对函数概念有深刻的理解,才能正确灵活地应用它。在本课程中,对函数概念的理解程度将直接影响其他知识的学习。因此,第一课时对于函数的学习非常重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1)教学知识目标:掌握对应和映射的概念,理解函数的定义和三要素,以及对函数符号的抽象理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3)德育渗透目标:培养学生具备辩证唯物主义观点,认识到一切事物都在不断变化、相互联系和相互制约的理念。

  教学目标确立的依据:

  函数是数学中最核心的概念之一,其在中学数学教育中起着重要的作用。函数概念贯穿于数、式、方程、函数、排列组合和数列极限等内容,这些代数知识都以函数为中心。加强对函数的教学有助于学生更好地理解和掌握其他数学内容。因此,对函数概念的深入理解是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射和函数是数学中非常重要的概念,它们的定义比较抽象,对于初入高中不久的学生来说可能不容易理解。另外,函数作为高考考点的一个重要内容,涵盖了低、中、高难度题型,因此近年来出现了对函数的热门关注。因此,本节课的重点和难点主要在于理解和应用映射的概念、函数的近代定义以及函数符号的运用。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的`函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:在教授函数概念和符号运用时,更重要的是向学生清晰地解释这些概念及相关注意事项,并通过师生共同讨论的方式帮助学生深入理解。只有这样,函数概念和符号运用才能真正在学生的思维和知识结构中留下深刻的印象,为接下来的学习打下坚实的基础。

  学法:

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:将高一(12)班和高一(11)全体同学视为两个集合,考虑通过“找好朋友”这一对应规则,是否存在某些元素在两个集合之间建立联系。请提供您需要回答的问题的具体要求,以便我能够更好地帮助您修改内容。

  二、新课讲授:

  (1)接下来,通过幻灯片向学生展示六组他们熟悉的数集的对应关系,并引导他们归纳出这些数集共同的性质(一对一,多对一)。然后,我们引入映射的概念,通过符号f:a→b来表示,同时解释原像和像的定义。在强调非空集合a到非空集合b的映射由三部分组成:非空集合a、非空集合b以及从a到b的对应法则f。此外,我们进一步指出判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f是否能够在b中找到确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  函数和映射是数学中的两个概念,它们之间有一些区别和联系。在接下来的内容中,我将通过比较函数的近代定义与映射的定义,来帮助大家更好地理解它们的区别和联系。函数是现代数学中的一个概念,它可以被定义为将一个非空数集的每个元素都映射到另一个非空数集的规则。简单来说,函数就是一种对应关系,它把输入的元素映射到输出的元素上。函数的定义可以用符号表示为:f: X → Y,其中X和Y分别是非空数集,f表示函数名,X称为函数的定义域,Y称为函数的值域。函数的定义要求每个输入元素都要有唯一的输出元素与之对应。映射是数学中常见的概念,它也可以被理解为一种对应关系。映射和函数之间的区别在于映射的定义更加宽泛,它可以是将一个集合的每个元素映射到另一个集合的规则,而不局限于数集。映射的定义可以用符号表示为:f: A → B,其中A和B可以是任意集合,f表示映射的名字,A称为映射的起始集合,B称为映射的终止集合。映射的定义要求每个起始集合中的元素都要有与之对应的终止集合中的元素,但并不要求唯一性。综上所述,函数是一种特殊类型的映射,它限定了输入和输出的数集的特定条件:非空数集。函数的定义更加严格,要求每个输入元素都要有唯一的输出元素与之对应。而映射的定义则更加宽泛,可以是将任意集合中的元素映射到另一个任意集合中的规则。我们可以把函数看作是映射的一种特例,即限定了输入和输出集合的类型为非空数集。希望通过以上的解释,大家对函数和映射的区别和联系有更清晰的认识。

  函数是一种将非空数集映射到非空数集的方式。以下是关于函数近代定义的一些注意事项:

  1. 函数的定义域和值域必须是非空数集,即定义了输入和输出的范围。

  2. 一个定义良好的函数,在定义域内的每个元素都有唯一对应的值域元素。

  3. 函数可以用多种形式来表示,如公式、图表、算法等。

  4. 函数的图像是在坐标系中画出的曲线或线段,表示定义域内的所有点对应的值域元素。

  5. 函数可以通过求导、积分等运算进行分析和变换。

  6. 函数可以具有不同的性质,如奇偶性、单调性、周期性等,这些性质对函数的图像和行为有重要影响。

  7. 函数可以进行组合运算,即将一个函数的输出作为另一个函数的输入,得到新的函数。

  8. 函数可以用来描述和模拟现实世界中的各种现象和关系,如物理学中的运动、经济学中的供求关系等。

  f表示对应关系,在不同的函数中f的具体含义不一样。

  f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  集合a中的数的任意性,集合b中数的性。

  “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三、讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0+1

  画图可以通过观察x和y之间的对应关系,得出从x的取值范围到y的取值范围是“多对一”关系,因此可以判断这是一个函数。该函数将非空数集映射到非空数集。

  [注]:引导从集合,映射的观点认识函数的定义。

  四、课时小结:

  1. 映射的定义。

  2. 函数的近代定义。

  3. 函数的三要素及符号的正确理解和应用。

  4. 函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本p51 习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

【《函数的概念》教学设计】相关文章:

《函数的概念》说课稿函数的概念的说课稿03-31

高中函数概念教学设计(通用10篇)10-20

数学函数的概念教学反思03-06

一次函数的概念优秀教学设计优秀06-13

函数的概念教学反思(精选12篇)11-12

《函数概念》说课稿01-06

函数的概念教学反思(精选19篇)11-08

函数的概念教学反思12篇11-12

中职函数的概念的说课稿04-23